Injury causes a systemic inflammatory response syndrome (SIRS) clinically much like sepsis 1. Microbial pathogen-associated molecular patterns (PAMPs) activate innate immunocytes through pattern recognition receptors 2. Similarly, cellular injury can release endogenous damage-associated molecular patterns (DAMPs) that activate innate immunity 3. Mitochondria are evolutionary endosymbionts that were derived from bacteria 4 and so might bear bacterial molecular motifs. We show here that injury releases mitochondrial DAMPs (MTD) into the circulation with functionally important immune consequences. MTD include formyl peptides and mitochondrial DNA. These activate human neutrophils (PMN) through formyl peptide receptor-1 and TLR9 respectively. MTD promote PMN Ca2+ flux and phosphorylation of MAP kinases, thus leading to PMN migration and degranulation in vitro and in vivo. Circulating MTD can elicit neutrophil-mediated organ injury. Cellular disruption by trauma releases mitochondrial DAMPs with evolutionarily conserved similarities to bacterial PAMPs into the circulation. These can then signal through identical innate immune pathways to create a sepsis-like state. The release of such mitochondrial ‘enemies within’ by cellular injury is a key link between trauma, inflammation and SIRS.
Colorectal cancer commonly metastasizes. The liver is the most frequent site of metastases and dominates the length of survival for this disease. As surgical and systemic therapies have become accepted and now are proven to be potentially curative, other sites of metastases have become more clinically relevant in terms of clinical symptoms and influence on survival. Treatment of extrahepatic metastases by surgical and ablative procedures is increasingly accepted and is proving to be effective at palliating symptoms, as well as life prolonging. In this review, we will first summarize key issues with metastatic colorectal cancer to the liver and available treatments. We will then discuss surgical and ablative treatments of other sites of disease including lung, lymph nodes, peritoneum, bone, and brain. Best available evidence for treatment strategies will be presented as well as potential new directions.
The evaluation of heat production from gold nanoparticles (AuNPs) irradiated with radiofrequency (RF) energy has been problematic due to Joule heating of their background ionic buffer suspensions. Insights into the physical heating mechanism of nanomaterials under RF excitations must be obtained if they are to have applications in fields such as nanoparticle-targeted hyperthermia for cancer therapy. By developing a purification protocol which allows for highly-stable and concentrated solutions of citrate-capped AuNPs to be suspended in high-resistivity water, we show herein, for the first time, that heat production is only evident for AuNPs of diameters ≤ 10 nm, indicating a unique size-dependent heating behavior not previously observed. Heat production has also shown to be linearly dependent on both AuNP concentration and total surface area, and severely attenuated upon AuNP aggregation. These relationships have been further validated using permittivity analysis across a frequency range of 10 MHz to 3 GHz, as well as static conductivity measurements. Theoretical evaluations suggest that the heating mechanism can be modeled by the electrophoretic oscillation of charged AuNPs across finite length scales in response to a time-varying electric field. It is anticipated these results will assist future development of nanoparticle-assisted heat production by RF fields for applications such as targeted cancer hyperthermia.
Formylated mitochondrial proteins are potent immune activators. Acting through the FPR-1 receptor on professional phagocytes, MDP elicits [Ca]i release responses and Ca entry via G-protein-coupled pathways. MDP activates chemotaxis and respiratory burst. Our findings suggest a novel paradigm wherein one root cause of SIRS after trauma may be the release of mitochondrial fragments from mechanically damaged tissues. In this paradigm, mitochondrial debris "alarmins" alter host PMN phenotype, activating or suppressing immunity, predisposing to SIRS, sepsis or organ failure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.