The present work describes an experimental investigation of the fatigue durability of AISI 304 and AISI 316L austenitic stainless steels, which have regular reliefs (RR) of the IV-th type, formed by ball burnishing (BB) on flat surfaces, using a computer numerical control (CNC) milling center. The methodology and the equipment used for obtaining regular reliefs, along with a vibration-induced fatigue test setup, are presented and described. The results from the BB process and the fatigue life experiments of the tested austenitic stainless steels are gathered, using the approach of factorial design experiments. It was found that the presence of RR of the IV-th type do not worsen the fatigue strength of the studied steels. The Pareto, t-test and Bayesian rule techniques are used to determine the main effects and the interactions of significance between ball burnishing regime parameters. A stochastic model is derived and is used to find when the probability of obtaining the maximum fatigue life of parts made of AISI 304 or 316L reaches its maximum value. It was found that when the deforming force, the amplitude of the sinewaves and their wavenumber are set at high values, and the feed rate is set at its low value, the probability to reach maximum fatigue life for the parts made of AISI 304 or 316L is equal to 97%.
Ball burnishing process often applies for obtaining specifically characteristics in the surface layer of the functional surfaces of the machine parts. Using CNC machines for carrying out this process significantly increases the possibility of control the characteristics of the toolpath of the ball tool and thus to produce regularly distributed roughness with specific size and direction of cells alignment. The current study presents obtained results from L8 Taguchi experimental design for determining the significantly influenced parameters of the ball burnishing process carried out on CNC milling machine on the size and arrangement direction of the cells form regular distributed roughness on planar surfaces.
The basic regularities in the influence of processing parameters on the geometrical characteristics of the partially regular microreliefs, formed on the rotary body face surface, are established. Combinations of partially regular microreliefs are formed by using a contemporary CNC milling machine, and an advanced programing method, based on previously developed mathematical models. Full factorial experimental design is carried out, which consist of three factors, varied on three levels. Regression stochastic models in coded and natural form, which give the relations between the width of the grooves and the deforming force, feed rate and the pitch of the axial grooves, are derived as a result. Response surfaces and contour plots are built in order to facilitate the results analysis. Based on the dependencies of the derived regression stochastic models, it is found that the greatest impact on the width of the grooves has the magnitude of the deforming force,followed by the feed rate. Also, it is found that the axial pitch between adjacent toolpaths has the least impact on the width of the grooves. As a result of the full-factorial experiment, the average geometric parameters of the microrelief grooves were obtained on their basis. When used, these values will provide for the required value of the relative burnishing area of the surface with regular microreliefs, and, accordingly, the specified operational properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.