The National Spherical Torus Experiment (NSTX) has undergone a major upgrade, and the NSTX Upgrade (NSTX-U) Project was completed in the summer of 2015. NSTX-U first plasma was subsequently achieved, diagnostic and control systems have been commissioned, the H-mode accessed, magnetic error fields identified and mitigated, and the first physics research campaign carried out. During ten run weeks of operation, NSTX-U surpassed NSTX record pulse-durations and toroidal fields (TF), and high-performance ~1 MA H-mode plasmas comparable to the best of NSTX have been sustained near and slightly above the n = 1 no-wall stability limit and with H-mode confinement multiplier H98y,2 above 1. Transport and turbulence studies in L-mode plasmas have identified the coexistence of at least two ion-gyro-scale turbulent micro-instabilities near the same radial location but propagating in opposite (i.e. ion and electron diamagnetic) directions. These modes have the characteristics of ion-temperature gradient and micro-tearing modes, respectively, and the role of these modes in contributing to thermal transport is under active investigation. The new second more tangential neutral beam injection was observed to significantly modify the stability of two types of Alfven eigenmodes. Improvements in offline disruption forecasting were made in the areas of identification of rotating MHD modes and other macroscopic instabilities using the disruption event characterization and forecasting code. Lastly, the materials analysis and particle probe was utilized on NSTX-U for the first time and enabled assessments of the correlation between boronized wall conditions and plasma performance. These and other highlights from the first run campaign of NSTX-U are described.
The L–H transition power threshold PLH is observed to increase with applied n = 3 resonant magnetic perturbations (RMP) in ITER-similar-shape plasmas with balanced neutral beam torque injection in DIII-D. The increase is most pronounced with added electron–cyclotron heating: PLH increases with decreasing edge plasma collisionality as PLH/PLH-08 ~ (ν*)−0.5, where PLH-08 is the 2008 ITPA multi-machine power threshold scaling. This result raises concerns for H-mode access at low edge collisionality in ITER, where RMP may have to be applied before the L–H transition to safely suppress the first edge-localized mode. Non-axisymmetric modifications with RMP include a simultaneous reduction of the radial electric field (Er) well depth and E × B shear. This can be attributed to increasing edge toroidal co-current rotation, and is consistent with substantially increased local long-wavelength turbulence (measured via beam emission spectroscopy). At high RMP perturbation strength the edge electric field Er reverses sign locally (becomes positive), with changes in dominant turbulence modes. Edge magnetic stochasticity provides an attractive explanation of the observed modifications, and the observed changes in toroidal rotation and Er are consistent with a simple fluid model describing radial electron current flow along stochastic fieldlines. The observed collisionality dependence of the L-mode edge electric field with applied RMP is also qualitatively consistent with this model. Reflectometry data indicate a significant reduction of the normalized L-mode radial density gradient a/Ln at high RMP field with simultaneous increase in radial particle flux and electron thermal flux from power balance analysis. We conjecture that the increase of PLH with RMP results from the combined effects of reduced E × B flow shear (increasing turbulent transport levels) and toroidal/poloidal flow modulation due to edge stochasticity. Initial experiments indicate that non-resonant n = 3 magnetic perturbations lead only to relatively small changes in Er, E × B shear and fluctuation characteristics, and have less impact on the L–H transition power threshold. This motivates further exploration of the RMP spectrum dependence of PLH for possible mitigation of the observed threshold increase.
The mission of the spherical tokamak NSTX-U is to explore the physics that drives core and pedestal transport and stability at high- and low collisionality, as part of the development of the spherical tokamak (ST) concept towards a compact, low-cost ST-based pilot plant. NSTX-U will ultimately operate at up to 2 MA and 1 T with up to 12 MW of neutral beam injection power for 5 s. NSTX-U will operate in a regime where electromagnetic instabilities are expected to dominate transport, and beam-heated NSTX-U plasmas will explore a portion of energetic particle parameter space that is relevant for both -heated conventional and low aspect ratio burning plasmas. NSTX-U will also develop the physics understanding and control tools to ramp-up and sustain high performance plasmas in a fully-noninductive fashion. NSTX-U began research operations in 2016, but a failure of a divertor magnetic field coil after ten weeks of operation resulted in the suspension of operations and initiation of recovery activities. During this period, there has been considerable work in the area of analysis, theory and modeling of data from both NSTX and NSTX-U, with a goal of understanding the underlying physics to develop predictive models that can be used for high-confidence projections for both ST and higher aspect ratio regimes. These studies have addressed issues in thermal plasma transport, macrostability, energetic particlet-driven instabilities at ion-cyclotron frequencies and below, and edge and divertor physics.
Detailed 2D turbulence measurements from the DIII-D tokamak provide an explanation for how resonant magnetic perturbations (RMPs) raise the L-H power threshold PLH [P. Gohil et al., Nucl. Fusion 51, 103020 (2011)] in ITER-relevant, low rotation, ITER-similar-shape plasmas with favorable ion ∇B direction. RMPs simultaneously raise the turbulence decorrelation rate ΔωD and reduce the flow shear rate ωshear in the stationary L-mode state preceding the L-H transition, thereby disrupting the turbulence shear suppression mechanism. RMPs also reduce the Reynolds stress drive for poloidal flow, contributing to the reduction of ωshear. On the ∼100 μs timescale of the L-H transition, RMPs reduce Reynolds-stress-driven energy transfer from turbulence to flows by an order of magnitude, challenging the energy depletion theory for the L-H trigger mechanism. In contrast, non-resonant magnetic perturbations, which do not significantly affect PLH, do not affect ΔωD and only slightly reduce ωshear and Reynolds-stress-driven energy transfer.
A beam emission spectroscopy system is being developed and deployed on the HL-2A tokamak to measure local low wavenumber (k⊥ρi < 1) density fluctuations by measuring the Doppler-shifted emission from a 50 kV deuterium heating neutral beam. High spatial resolution (Δr ≤ 1 cm, Δz ≤ 1.5 cm) measurements are achieved with customized in-vacuum optics. High frequency, high-gain preamplifiers sample the light intensity at a Nyquist frequency of 1 MHz and achieve a high S/N ratio via high optical throughput, low-noise preamplifiers, and high quantum efficiency photodiodes. A first set of 16 detector channels [configured in an 8 (radial) × 2 (poloidal) array] has been installed and tested at HL-2A, covering the radial range r/a = 0.8–1.1. The frequency and wavenumber spectra have been measured under different plasma conditions. Initial measurements have demonstrated the capability of measuring edge plasma density fluctuation spectra and the poloidal flow velocity fields with a high S/N ratio.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.