The L–H transition power threshold PLH is observed to increase with applied n = 3 resonant magnetic perturbations (RMP) in ITER-similar-shape plasmas with balanced neutral beam torque injection in DIII-D. The increase is most pronounced with added electron–cyclotron heating: PLH increases with decreasing edge plasma collisionality as PLH/PLH-08 ~ (ν*)−0.5, where PLH-08 is the 2008 ITPA multi-machine power threshold scaling. This result raises concerns for H-mode access at low edge collisionality in ITER, where RMP may have to be applied before the L–H transition to safely suppress the first edge-localized mode. Non-axisymmetric modifications with RMP include a simultaneous reduction of the radial electric field (Er) well depth and E × B shear. This can be attributed to increasing edge toroidal co-current rotation, and is consistent with substantially increased local long-wavelength turbulence (measured via beam emission spectroscopy). At high RMP perturbation strength the edge electric field Er reverses sign locally (becomes positive), with changes in dominant turbulence modes. Edge magnetic stochasticity provides an attractive explanation of the observed modifications, and the observed changes in toroidal rotation and Er are consistent with a simple fluid model describing radial electron current flow along stochastic fieldlines. The observed collisionality dependence of the L-mode edge electric field with applied RMP is also qualitatively consistent with this model. Reflectometry data indicate a significant reduction of the normalized L-mode radial density gradient a/Ln at high RMP field with simultaneous increase in radial particle flux and electron thermal flux from power balance analysis. We conjecture that the increase of PLH with RMP results from the combined effects of reduced E × B flow shear (increasing turbulent transport levels) and toroidal/poloidal flow modulation due to edge stochasticity. Initial experiments indicate that non-resonant n = 3 magnetic perturbations lead only to relatively small changes in Er, E × B shear and fluctuation characteristics, and have less impact on the L–H transition power threshold. This motivates further exploration of the RMP spectrum dependence of PLH for possible mitigation of the observed threshold increase.
Stationary 3D equilibria can form in fusion plasmas via saturation of magnetohydrodynamic (MHD) instabilities or stimulated by external 3D fields. In these cases the current profile is anomalously broad due to magnetic flux pumping produced by the MHD modes. Flux pumping plays an important role in hybrid tokamak plasmas, maintaining the minimum safety factor above unity and thus removing sawteeth. It also enables steady-state hybrid operation, by redistributing non-inductive current driven near the center by electron cyclotron waves. A validated flux pumping model is not yet available, but it would be necessary to extrapolate hybrid operation to future devices. In this work flux pumping physics is investigated for helical core equilibria stimulated by external 3D fields in DIII-D hybrid plasmas. We show that flux pumping can be produced in a continuous way by an MHD dynamo emf. The same effect maintains helical equilibria in reversed-field pinch (RFP) plasmas. The effective MHD dynamo loop voltage is calculated for experimental 3D equilibrium reconstructions, by balancing Ohm's law over helical flux surfaces, and is consistent with the expected current redistribution. Similar results are also obtained with more sophisticated nonlinear MHD simulations. The same modelling approach is applied to helical RFP states forming spontaneously in RFX-mod as the plasma current is raised above 0.8-1 MA. This comparison allows to identify the underlying physics common to tokamak and RFP: a helical core displacement modulates parallel current density along flux tubes, which requires a helical electrostatic potential to build up, giving rise to a helical MHD dynamo flow.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.