To examine whether ferulic acid (FA) could protect plants from dehydration stress and to investigate a mechanism for the protection, cucumber seedlings were pretreated with 0.5 mM FA for 2 d and then were exposed to dehydration induced by 10 % polyethylene glycol 6000. After pretreatment with FA, the activities of antioxidant enzymes (catalase, superoxide dismutase, and quaiacol peroxidase) in leaves were higher than under dehydration treatment alone which was in accordance with the increased transcript levels of respective genes. Moreover, the combination of FA pretreatment and dehydration reduced the content of superoxide radical, hydrogen peroxide, and malondialdehyde, and increased the relative water content and content of FA, proline, and soluble sugars in comparison with dehydration alone. We propose that pretreatment with FA protects cucumbers against dehydration stress by decrease of lipid peroxidation due to activation of antioxidant enzymes and by increase of proline and soluble sugar content in leaves.
Our study examined the relationship between photosynthetic performance and activities of key photosynthetic enzymes to understand the photosynthetic variation and reasons for the variation during dormancy induction under different photoperiods in peach (Prunus persica L. cv. Chunjie). Furthermore, the study explained the changes in the key enzymes from the viewpoint of differential proteomics. The results showed that the leaf net photosynthetic rate (P N ) and stomatal conductance tended to decrease, while the intercellular CO 2 concentration rose, which indicated that the reduced P N resulted from nonstomatal limitation. During the dormancy induction period, the activities of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and phosphoenolpyruvate carboxylase (PEPC) declined, which was the main reason for the reduced P N . Two-dimensional electrophoresis maps and differential protein identification demonstrated that the decrease in activity of the photosynthetic enzymes was mainly due to enzymatic degradation. The enzyme degradation by a long-day treatment occurred later and to a lesser degree than that of the short-day treatment. In the long-day treatment, the carboxylation activity of Rubisco was higher than that of the control treatment, and the PEPC activity and the ratio of the PEPC/Rubisco activity were lower than the corresponding activities during the control treatment. These differences under long-day conditions were significant but did not occur in the short-day treatment, suggesting that the C 4 pathway might be more active under short-day conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.