Dormancy mechanisms in seeds and buds arrest growth until environmental conditions are optimal for development. A genotype-specific period of chilling is usually required to release dormancy, but the underlying molecular mechanisms are still not fully understood. To discover transcriptional pathways associated with dormancy release common to seed stratification and bud endodormancy, we explored the chilling-dependent expression of 11 genes involved in endoplasmic reticulum stress and the unfolded protein response signal pathways. We propose that endoplasmic reticulum stress and the unfolded protein response impact on seed as well as bud germination and development by chilling-dependent mechanisms. The emerging discovery of similarities between seed stratification and bud endodormancy status indicate that these two processes are probably regulated by common endoplasmic reticulum stress and unfolded protein response signalling pathways. Clarification of regulatory pathways common to both seed and bud dormancy may enhance understanding of the mechanisms underlying dormancy and breeding programs may benefit from earlier prediction of chilling requirements for uniform blooming of novel genotypes of deciduous fruit tree species.
Our study examined the relationship between photosynthetic performance and activities of key photosynthetic enzymes to understand the photosynthetic variation and reasons for the variation during dormancy induction under different photoperiods in peach (Prunus persica L. cv. Chunjie). Furthermore, the study explained the changes in the key enzymes from the viewpoint of differential proteomics. The results showed that the leaf net photosynthetic rate (P N ) and stomatal conductance tended to decrease, while the intercellular CO 2 concentration rose, which indicated that the reduced P N resulted from nonstomatal limitation. During the dormancy induction period, the activities of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and phosphoenolpyruvate carboxylase (PEPC) declined, which was the main reason for the reduced P N . Two-dimensional electrophoresis maps and differential protein identification demonstrated that the decrease in activity of the photosynthetic enzymes was mainly due to enzymatic degradation. The enzyme degradation by a long-day treatment occurred later and to a lesser degree than that of the short-day treatment. In the long-day treatment, the carboxylation activity of Rubisco was higher than that of the control treatment, and the PEPC activity and the ratio of the PEPC/Rubisco activity were lower than the corresponding activities during the control treatment. These differences under long-day conditions were significant but did not occur in the short-day treatment, suggesting that the C 4 pathway might be more active under short-day conditions.
In view of the current network structure of the Smart Substations in China, the industrial Ethernet is analyzed with respect to the presence of long latency that may be found in the communication of Smart Substation, the configuration complexity that is not conducive to repair and the maintenance involving relatively high economic costs. A connection-oriented switching network technology is then proposed on similar issues, with a leaky bucket model being built up based on the substation information flow. Subsequently, the service classification and priority scheduling mechanism are placed to introduce the network calculus to calculate the delay bound of each of information flows. Conclusively, based on the IEC62439, a network communication method for Smart substation is established to solve the problems with the Industrial Ethernet application in smart substation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.