A major objective of this study was to extend the Vitti-Dias model used to describe P metabolism in ruminants, by adding 2 new pools to the original model to represent the rumen and saliva. An experiment was carried out using 24 male sheep, initial BW of 34.5 kg, aged 8 mo, fed a basal diet supplied with increasing amounts of dicalcium phosphate to provide 0.14, 0.32, 0.49, and 0.65% P in the diet. Sheep were individually housed indoors in metabolic cages and injected with a single dose of 7.4 MBq of (32)P into a jugular vein. Feed intake and total fecal and urinary outputs were recorded and sampled daily for 1 wk, and blood samples were obtained at 5 min, and 1, 2, 4, 6, 24, 48, 72, 96, 120, 144, and 168 h after (32)P injection. Saliva and rumen fluid samples were taken on d 6, 7, and 8. Then, animals were slaughtered and samples from liver, kidney, testicle, muscle, and heart (soft tissue) and bone were collected. Specific radioactivity and inorganic P were then determined in bone, soft tissue, plasma, rumen, saliva, and feces, and used to calculate flows between pools. Increased P intake positively affected total P (r = 0.97, P < 0.01) and endogenous P excretion in feces (r = 0.85, P < 0.01), P flow from plasma to saliva (r = 0.73, P < 0.01), from saliva to rumen (r = 0.73, P < 0.01), and from lower gastrointestinal tract to plasma (r = 0.72, P < 0.01). Urinary P excretion was similar for all treatments (P = 0.35). It was, however, related to plasma P (r = 0.63, P < 0.01) and to net P flow to bone (accretion - resorption; r = -0.64, P < 0.01). Phosphorus intake affected net P flow to soft tissue (P = 0.04) but not net P flow to bone (P = 0.46). Phosphorus mobilized from bone was directed toward soft tissue, as suggested by the correlations between P flow from bone to plasma and net P flow to soft tissue (r = 0.89, P < 0.01), and P flow from plasma to soft tissue and net P flow to bone (r = -0.76, P < 0.01). The lack of effect of dietary P on net P accretion in bone suggests that P demand for bone formation was low and surplus P was partially used by soft tissue. In conclusion, the model resulted in appropriate biological description of P metabolism in sheep and added knowledge of the effects of surplus dietary P on P metabolism. Additionally, the model can be used as a tool to assess feeding strategies aiming to mitigate P excretion into the environment.
Determinaram-se as perdas endógenas mínimas, a exigência de fósforo e a absorção real do fósforo do fosfato bicálcico em suínos no final da fase de crescimento, pela técnica da diluição isotópica. Foram utilizados 20 leitões híbridos comerciais, com peso de 48kg, distribuídos em delineamento experimental de blocos ao acaso com cinco tratamentos, constituídos de dietas com diferentes níveis de P total (0,33, 0,36, 0,47, 0,54 e 0,61%), com quatro repetições. A excreção fecal e urinária, a absorção e a retenção de P foram influenciadas pelos níveis de consumo desse mineral. As perdas endógenas fecais não foram influenciadas pelos níveis de P consumido, indicando que os níveis ingeridos foram insuficientes para atender às exigências de P dos leitões. A biodisponibilidade do fósforo do fosfato bicálcico foi de 74,7% e a exigência de mantença de 10,02mgP/kg p.v./dia.
SUMMARYThe objective of the present study was to examine the effect of the level of phosphorus (P) intake on ruminal P kinetics in sheep. Twelve Santa Inês male sheep (average body weight 36 kg) were fed a basal diet consisting of roughage (coast cross hay), concentrate mixture (cassava meal, soya bean meal and urea) and a mineral premix. The treatments consisted of the basal diet supplemented with 0, 1·5, 3 or 4·5 g/kg dry matter (DM) of mono-ammonium phosphate to provide increasing P levels representing treatments T0, T1, T2 and T3, respectively. The P content of experimental diets was 1·5; 2·0; 2·5 and 3·0 g P/kg DM, and considered highly deficient, deficient, adequate and in excess, respectively, compared with standard recommended allowances. Animals were injected with 32P and thereafter samples of blood were collected over 7 days, while samples of rumen fluid and saliva were collected 4 and 6 days after injection. Phosphorus intake affected P concentration in ruminal fluid, whereas P concentration in saliva was not affected. The values for P turnover time in the rumen were 1·42, 1·23, 1·18 and 1·04 days, whereas values of endogenous P entry into the rumen were 1·05, 1·37, 1·53 and 1·91 g/day for T0, T1, T2 and T3, respectively, both affected by P intake. The specific activity (SA) of P in saliva, rumen and plasma were also all affected by P intake. The relationship between saliva and rumen SA emphasizes that most endogenous P in the rumen came from saliva. The possibility of an extra P source besides saliva contributing to endogenous P in the rumen is discussed. It is concluded from the results that, regardless of P intake, the flow of endogenous P into the rumen contributes to ensure a minimum supply of this essential element, which may be important in matching the requirements of the rumen microbes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.