High-energy focused proton beam irradiation has been used to controllably blueshift the resonant wavelength of porous silicon microcavities in heavily doped p-type wafers. Irradiation results in an increased resistivity, hence a locally reduced rate of anodization. Irradiated regions are consequently thinner and of a higher refractive index than unirradiated regions, and the microcavity blueshift arises from a net reduction in the optical thickness of each porous layer. Using this process wafers are patterned on a micrometer lateral scale with microcavities tuned to different resonant wavelengths, giving rise to high-resolution full-color reflection images over the full visible spectrum.
An image of a dragon is replicated in porous silicon by using 2 MeV helium irradiation prior to electrochemical etching. By careful control of the ion dose at each region, the photoluminescence (PL) wavelength can be tuned to produce a PL image matching that of the original. Results have been explained in terms of ion‐induced changes in the wafer resistivity.
A process to fabricate porous silicon Bragg reflectors patterned on a micrometer lateral scale over wafer areas of several square centimeters is described. This process is based on a new type of projection system involving a megavolt accelerator and a quadrupole lens system to project a uniform distribution of MeV ions over a wafer surface, which is coated with a multilevel mask. In conjunction with electrochemical anodisation, this enables the rapid production of high-density arrays of a variety of optical and photonic components in silicon such as waveguides and optical microcavities for applications in high-definition reflective displays and optical communications.
We have fabricated light emitting porous silicon micropatterns with controlled emission intensity. This has been achieved by direct write irradiation in heavily doped p-type silicon ͑0.02 ⍀ cm͒ using a 2 MeV proton beam, focused to a spot size of 200 nm. After electrochemical etching in hydrofluoric acid, enhanced photoluminescence is observed from the irradiated regions. The intensity of light emission is proportional to the dose of the proton beam, so the PL intensity of the micropattern can be tuned and varied between adjacent regions on a single substrate. This behavior is in contrast to previous ion beam patterning of p-type silicon, as light is preferentially created as opposed to quenched at the irradiated regions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.