Abstract-The plenoptic function (POF) provides a powerful conceptual tool for describing a number of problems in image/video processing, vision, and graphics. For example, image-based rendering is shown as sampling and interpolation of the POF. In such applications, it is important to characterize the bandwidth of the POF. We study a simple but representative model of the scene where band-limited signals (e.g., texture images) are "painted" on smooth surfaces (e.g., of objects or walls). We show that, in general, the POF is not band limited unless the surfaces are flat. We then derive simple rules to estimate the essential bandwidth of the POF for this model. Our analysis reveals that, in addition to the maximum and minimum depths and the maximum frequency of painted signals, the bandwidth of the POF also depends on the maximum surface slope. With a unifying formalism based on multidimensional signal processing, we can verify several key results in POF processing, such as induced filtering in space and depth-corrected interpolation, and quantify the necessary sampling rates.
Image based-rendering (IBR) can be seen as the sampling and reconstruction of the plenoptic function. The question of the minimum sampling rate in IBR can be addressed via spectral analysis of the plenoptic function. We study a model of the scene where bandlimited images are "painted" on surfaces (e.g. of objects or walls). We show that, in general, the plenoptic function is not bandlimited unless the surfaces are flat. We then characterize the spectral decay of the plenoptic function for this model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.