Materials harbouring exotic quasiparticles, such as massless Dirac and Weyl fermions, have garnered much attention from physics and material science communities due to their exceptional physical properties such as ultra-high mobility and extremely large magnetoresistances. Here, we show that the highly stable, non-toxic and earth-abundant material, ZrSiS, has an electronic band structure that hosts several Dirac cones that form a Fermi surface with a diamond-shaped line of Dirac nodes. We also show that the square Si lattice in ZrSiS is an excellent template for realizing new types of two-dimensional Dirac cones recently predicted by Young and Kane. Finally, we find that the energy range of the linearly dispersed bands is as high as 2 eV above and below the Fermi level; much larger than of other known Dirac materials. This makes ZrSiS a very promising candidate to study Dirac electrons, as well as the properties of lines of Dirac nodes.
For the purpose of recovering the intriguing electronic properties of freestanding graphene at a solid surface, graphene self-organized on a Au monolayer on Ni(111) is prepared and characterized by scanning tunneling microscopy. Angle-resolved photoemission reveals a gapless linear pi-band dispersion near K[over] as a fingerprint of strictly monolayer graphene and a Dirac crossing energy equal to the Fermi energy (EF) within 25 meV meaning charge neutrality. Spin resolution shows a Rashba effect on the pi states with a large (approximately 13 meV) spin-orbit splitting up to EF which is independent of k.
Graphene in spintronics is predominantly considered for spin current leads of high performance due to weak intrinsic spin-orbit coupling of the graphene p electrons. Externally induced large spin-orbit coupling opens the possibility of using graphene in active elements of spintronic devices such as the Das-Datta spin field-effect transistor. Here we show that Au intercalation at the graphene-Ni interface creates a giant spin-orbit splitting (B100 meV) of the graphene Dirac cone up to the Fermi energy. Photoelectron spectroscopy reveals the hybridization with Au 5d states as the source for this giant splitting. An ab initio model of the system shows a Rashba-split spectrum around the Dirac point of graphene. A sharp graphene-Au interface at the equilibrium distance accounts for only B10 meV spin-orbit splitting and enhancement is due to the Au atoms in the hollow position that get closer to graphene and do not break the sublattice symmetry.
We show by angle-resolved photoemission spectroscopy that a tunable gap in quasi-free-standing monolayer graphene on Au can be induced by hydrogenation. The size of the gap can be controlled via hydrogen loading and reaches approximately 1.0 eV for a hydrogen coverage of 8%. The local rehybridization from sp(2) to sp(3) in the chemical bonding is observed by X-ray photoelectron spectroscopy and X-ray absorption and allows for a determination of the amount of chemisorbed hydrogen. The hydrogen induced gap formation is completely reversible by annealing without damaging the graphene. Calculations of the hydrogen loading dependent core level binding energies and the spectral function of graphene are in excellent agreement with photoemission experiments. Hydrogenation of graphene gives access to tunable electronic and optical properties and thereby provides a model system to study hydrogen storage in carbon materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.