A series of highly soluble fullerene derivatives with varying acceptor strengths (i.e., first reduction potentials) was synthesized and used as electron acceptors in plastic solar cells. These fullerene derivatives, methanofullerene [6,6]‐phenyl C61‐butyric acid methyl ester (PCBM), a new azafulleroid, and a ketolactam quasifullerene, show a variation of almost 200 mV in their first reduction potential. The open circuit voltage of the corresponding devices was found to correlate directly with the acceptor strength of the fullerenes, whereas it was rather insensitive to variations of the work function of the negative electrode. These observations are discussed within the concept of Fermi level pinning between fullerenes and metals via surface charges.
The relation between the nanoscale morphology and associated device properties in conjugated polymer/fullerene bulk‐heterojunction “plastic solar cells” is investigated. We perform complementary measurements on solid‐state blends of poly[2‐methoxy‐5‐(3,7‐dimethyloctyloxy)]‐1,4‐phenylenevinylene (MDMO‐PPV) and the soluble fullerene C60 derivative 1‐(3‐methoxycarbonyl) propyl‐1‐phenyl [6,6]C61 (PCBM), spin‐cast from either toluene or chlorobenzene solutions. The characterization of the nanomorphology is carried out via scanning electron microscopy (SEM) and atomic force microscopy (AFM), while solar‐cell devices were characterized by means of current–voltage (I–V) and spectral photocurrent measurements. In addition, the morphology is manipulated via annealing, to increase the extent of phase separation in the thin‐film blends and to identify the distribution of materials. Photoluminescence measurements confirm the demixing of the materials under thermal treatment. Furthermore the photoluminescence of PCBM clusters with sizes of up to a few hundred nanometers indicates a photocurrent loss in films of the coarser phase‐separated blends cast from toluene. For toluene‐cast films the scale of phase separation depends strongly on the ratio of MDMO‐PPV to PCBM, as well as on the total concentration of the casting solution. Finally we observe small beads of 20–30 nm diameter, attributed to MDMO‐PPV, in blend films cast from both toluene and chlorobenzene.
Review: The conversion of sunlight into electricity can be achieved using a solar cell and is one of the most attractive future soruce of energy. Silicon‐based cells, while quite efficient, are difficult and expensive to produce, a fact that drives up the cost of electricity produced using them. The alternative, organic‐based cells (see Figure) have the potential advantages of ease of processing and cheapness if their efficiency can be brought up to reasonable levels. Recent progress made and future targets in this field are reviewed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.