The absorption changes that occur in reaction centers of the photosynthetic bacterium Rhodopseudomonas sphaeroides during the initial photochemical electron-transfer reaction have been examined. Measurements were made between 740 and 1300 nm at 295 and 80 K by using a pulse-probe technique with 610-nm, 0.8-ps flashes. An excited singlet state of the bacteriochlorophyll dimer P* was found to give rise to stimulated emission with a spectrum similar to that determined previously for fluorescence from reaction centers. The stimulated emission was used to follow the decay of P*; its lifetime was 4.1 +/- 0.2 ps at 295 K and 2.2 +/- 0.1 ps at 80 K. Within the experimental uncertainty, the absorption changes associated with the formation of a bacteriopheophytin anion, Bph-, develop in concert with the decay of P* at both temperatures, as does the absorption increase near 1250 nm due to the formation of the cation of P, P+. No evidence was found for the formation of a bacteriochlorophyll anion, Bchl-, prior to the formation of Bph-. This is surprising, because in the crystal structure of the Rhodopseudomonas viridis reaction center [Deisenhofer, J., Epp, O., Miki, K., Huber, R., & Michel, H. (1984) J. Mol. Biol. 180, 385-398] a Bchl is located approximately in between P and the Bph. It is possible that Bchl- (or Bchl+) is formed but, due to kinetic or thermodynamic constraints, is never present at a sufficient concentration for us to observe. Alternatively, a virtual charge-transfer state, such as P+Bchl-Bph or PBchl+Bph-, could serve to lower the energy barrier for direct electron transfer between P* and the Bph.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.