We demonstrate the emergence of complexity from remarkably simple and ubiquitous systems: draining thin-film suspensions exhibiting a striking transition between two classes of self-organizing patterns. Vertical channels form when attractive forces lead to transient gelation, while horizontal bands result from granular mixtures. We propose an explanation whereby the generic physical mechanisms require only the existence of viscous and excluded-volume couplings among the particles, solvent, and substrate. System-specific, small inhomogeneities trigger large-scale pattern formation, through collective dynamics, where jamming plays a crucial role. Our results shed light on emergent complexity in bio- and geophysical processes and have implications for coatings and food industries.
This paper addresses the effects of solid boundaries on the evolution of two-dimensional turbulence in a finite square domain, for the cases of both decaying and continuously forced flow. Laboratory experiments and numerical flow simulations have revealed the crucial role of the solid no-slip walls as sources of vorticity filaments, which may significantly affect the flow evolution in the interior. In addition, the walls generally provide normal and tangential stresses that may exert a net torque on the fluid, which can change the total angular momentum of the contained fluid. For the case of decaying turbulence this is observed in so-called ‘spontaneous spin-up’, i.e. a significant increase of the total angular momentum, corresponding to a large domain-filling circulation cell in the organized ‘final’ state. For the case of moderate forcing this phenomenon may still be observed, although the filamentary vortex structures advected away from the walls may cause erosion and possibly a total destruction of the central cell. This disordered stage – characterized by a significantly decreased total angular momentum – is usually followed by a re-organization into a large circulation cell (in either the same or opposite direction) with an increased total angular momentum. The scaling behaviour of vorticity structure functions and the probability distribution function of vorticity increments have been investigated for forced turbulence and indicate a strong anisotropy of the turbulent flow in the range of Reynolds numbers considered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.