Our study emphasizes the importance of wide local excision with margins of at least 3 cm in order to prevent local recurrence. However, the recent development of inhibitors of signal transduction by the PDGFB pathway should soon modify the surgical strategy, which is often too mutilating.
Abstract-How vesicles are born in the trans-Golgi network and reach their docking sites at the plasma membrane is still largely unknown and is investigated in the present study on live, primary cultured atrial cardiomyocytes.
The POMC gene, encoding a hormonal precursor protein, is primarily expressed in the pituitary in a tissue-specific manner. The POMC gene is transcriptionally regulated by a variety of hormones and neuropeptides and the second messengers cAMP and Ca++. Using the corticotrope-derived AtT20 cell line, we have previously shown that overexpression of cFos stimulates POMC transcription. The aim of this work was to analyze whether cFos directly interacts with the POMC gene in basal and corticotropin-releasing hormone (CRH) stimulated cells. Using progressively deleted POMC promoter sequences or heterologous promoter constructs coupled to the chloramphenicol acetyl transferase reporter gene, we demonstrate the existence of a major cFos- responsive sequence within the first exon of the POMC gene. This sequence, TGACTAA, appears functionally indistinguishable from the canonical AP1 binding site. When fused to a minimal promoter, this sequence confers inducibility by cFos and CRH. Gel shift analyses with CRH-stimulated AtT20 nuclear extracts or in vitro synthesized proteins revealed that this sequence efficiently binds Fos and Jun. Expression of c-fos anti-sense mRNA reduced CRH-stimulated POMC transcription, thus indicating that, at least in part, cFos mediates the effect of CRH on POMC transcription. However, deletion of this major exonic AP1 site from the POMC constructs greatly reduced the effect of c-fos overexpression but did not suppress POMC stimulation by CRH, indicating that CRH stimulates POMC transcription by one or more cFos-independent mechanism(s).
The functional and pharmacological properties of ATP-sensitive K(+) (K(ATP)) channels were studied in primary cultured neonatal rat atrial appendage cardiomyocytes. Activation of a whole-cell inward rectifying K(+) current depended on the pipette ATP concentration and correlated with a membrane hyperpolarization close to the K(+) equilibrium potential. The K(ATP) current could be activated either spontaneously or by a hypotonic stretch of the membrane induced by lowering the osmolality of the bathing solution from 290 to 260 mOsm/kg H(2)O or by the K(+) channel openers diazoxide and cromakalim with EC(50) approximately 1 and 10 nmol/L, respectively. The activated atrial K(ATP) current was highly sensitive to glyburide, with an IC(50) of 1.22+/-0.15 nmol/L. Recorded in inside-out patches, the neonatal atrial K(ATP) channel displayed a conductance of 58.0+/-2.2 pS and opened in bursts of 133.8+/-20.4 ms duration, with an open time duration of 1.40+/-0.10 ms and a close time duration of 0.66+/-0.04 ms for negative potentials. The channel had a half-maximal open probability at 0.1 mmol/L ATP, was activated by 100 micromol/L diazoxide, and was inhibited by glyburide, with an IC(50) in the nanomolar range. Thus, pending further tests at low concentrations of K(ATP) channel openers, the single-channel data confirm the results obtained with whole-cell recordings. The neonatal atrial appendage K(ATP) channel thus shows a unique functional and pharmacological profile resembling the pancreatic beta-cell channel for its high affinity for glyburide and diazoxide and for its conductance, but also resembling the ventricular channel subtype for its high affinity for cromakalim, its burst duration, and its sensitivity to ATP. Reverse transcriptase-polymerase chain reaction experiments showed the expression of Kir6.1, Kir6.2, SUR1A, SUR1B, SUR2A, and SUR2B subunits, a finding supporting the hypothesis that the neonatal atrial K(ATP) channel corresponds to a novel heteromultimeric association of K(ATP) channel subunits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.