The functional and pharmacological properties of ATP-sensitive K(+) (K(ATP)) channels were studied in primary cultured neonatal rat atrial appendage cardiomyocytes. Activation of a whole-cell inward rectifying K(+) current depended on the pipette ATP concentration and correlated with a membrane hyperpolarization close to the K(+) equilibrium potential. The K(ATP) current could be activated either spontaneously or by a hypotonic stretch of the membrane induced by lowering the osmolality of the bathing solution from 290 to 260 mOsm/kg H(2)O or by the K(+) channel openers diazoxide and cromakalim with EC(50) approximately 1 and 10 nmol/L, respectively. The activated atrial K(ATP) current was highly sensitive to glyburide, with an IC(50) of 1.22+/-0.15 nmol/L. Recorded in inside-out patches, the neonatal atrial K(ATP) channel displayed a conductance of 58.0+/-2.2 pS and opened in bursts of 133.8+/-20.4 ms duration, with an open time duration of 1.40+/-0.10 ms and a close time duration of 0.66+/-0.04 ms for negative potentials. The channel had a half-maximal open probability at 0.1 mmol/L ATP, was activated by 100 micromol/L diazoxide, and was inhibited by glyburide, with an IC(50) in the nanomolar range. Thus, pending further tests at low concentrations of K(ATP) channel openers, the single-channel data confirm the results obtained with whole-cell recordings. The neonatal atrial appendage K(ATP) channel thus shows a unique functional and pharmacological profile resembling the pancreatic beta-cell channel for its high affinity for glyburide and diazoxide and for its conductance, but also resembling the ventricular channel subtype for its high affinity for cromakalim, its burst duration, and its sensitivity to ATP. Reverse transcriptase-polymerase chain reaction experiments showed the expression of Kir6.1, Kir6.2, SUR1A, SUR1B, SUR2A, and SUR2B subunits, a finding supporting the hypothesis that the neonatal atrial K(ATP) channel corresponds to a novel heteromultimeric association of K(ATP) channel subunits.
(1) K(ATP) channels are significantly more sensitive to metabolic inhibition in atrial than ventricular myocytes. (2) Sensitivity of atrium versus ventricle to the channel opener diazoxide increases from 3:1 to > or = 24:1 with ADP or metabolic inhibition. If extended to intact hearts, the results would predict a higher atrial sensitivity to ischemia, and a high sensitivity of the ischemic atrium to K(ATP) channel openers.
. Pore loop-mutated rat KIR6.1 and KIR6.2 suppress KATP current in rat cardiomyocytes. Am J Physiol Heart Circ Physiol 287: H850 -H859, 2004. First published March 25, 2004 10.1152/ajpheart.00054.2004.-Cardiomyocytes express mRNA for all major subunits of ATP-sensitive potassium (KATP) channels: KIR6.1, KIR6.2, SUR1A, SUR2A, and SUR2B. It has remained controversial as to whether KIR6.1 may associate with KIR6.2 to form the tetrameric pore of KATP channels in cardiomyocytes. To explore this possibility, cultured rat cardiomyocytes were examined for an inhibition of K ATP current by overexpression of pore loop-mutated (inactive) KIR6.x. Bicistronic plasmids were constructed encoding loop-mutated (AFA or SFG for GFG) rat KIR6.x followed by EGFP. In ventricular myocytes, the overexpression of KIR6.1SFG-pIRES2-EGFP or KIR6.2AFA-pIRES2-EGFP DNA caused, after 72 h, a major decrease of K ATP current density of 85.8% and 82.7%, respectively (P Ͻ 0.01), relative to EGFP controls (59 Ϯ 9 pA/pF). In atrial myocytes, overexpression of these poremutated KIR6.x by 6.0-fold and 10.6-fold, as assessed by quantitative immunohistochemistry, caused a decrease of KATP current density of 73.7% and 58.5%, respectively (P Ͻ 0.01). Expression of wild-type rat KIR6.2 increased the ventricular and atrial K ATP current density by 58.3% and 42.9%, respectively (P Ͻ 0.01), relative to corresponding EGFP controls, indicating a reserve of SUR to accommodate increased KIR6.x trafficking to the sarcolemma. The results favor the view that KIR6.1 may associate with KIR6.2 to form heterotetrameric pores of native K ATP channels in cardiomyocytes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.