On September 22, 2020, this report was posted as an MMWR Early Release on the MMWR website (https://www.cdc.gov/mmwr). Contact tracing is a strategy implemented to minimize the spread of communicable diseases (1,2). Prompt contact tracing, testing, and self-quarantine can reduce the transmission of SARS-CoV-2, the virus that causes coronavirus disease 2019 (COVID-19) (3,4). Community engagement is important to encourage participation in and cooperation with SARS-CoV-2 contact tracing (5). Substantial investments have been made to scale up contact tracing for COVID-19 in the United States. During June 1-July 12, 2020, the incidence of COVID-19 cases in North Carolina increased 183%, from seven to 19 per 100,000 persons per day* (6). To assess local COVID-19 contact tracing implementation, data from two counties in North Carolina were analyzed during a period of high incidence. Health department staff members investigated 5,514 (77%) persons with COVID-19 in Mecklenburg County and 584 (99%) in Randolph Counties. No contacts were reported for 48% of cases in Mecklenburg and for 35% in Randolph. Among contacts provided, 25% in Mecklenburg and 48% in Randolph could not be reached by telephone and were classified as nonresponsive after at least one attempt on 3 consecutive days of failed attempts. The median interval from specimen collection from the index patient to notification of identified contacts was 6 days in both counties. Despite aggressive efforts by health department staff members to perform case investigations and contact tracing, many persons with COVID-19 did not report contacts, and many contacts were not reached. These findings indicate that improved timeliness of contact tracing, community engagement, and increased use of community-wide mitigation are needed to interrupt SARS-CoV-2 transmission. Routinely collected case investigation and contact tracing data from June 1-30, 2020, for Mecklenburg, and from June 15-July 12, 2020, for Randolph counties were analyzed. Case investigations were conducted for persons with laboratoryconfirmed COVID-19, including the elicitation of persons potentially exposed to the index patient (3). Contact tracing was performed for persons identified as close contacts and included inquiry about COVID-19-compatible symptoms † and instructions to self-quarantine for 14 days since last exposure (3). Health
This project utilized a cross-sectional study design to assess diabetes risk among 540 individuals from 12 counties using trained extension agents and community organizations in West Virginia. Individuals were screened for diabetes using (1) the validated 7-item diabetes risk assessment survey and (2) hemoglobin A1c tests. Demographic and lifestyle behaviors were also collected. The average age, body mass index, and A1c were 51.2 ± 16.4, 31.1 ± 7.5, and 5.8 ± 0.74, respectively. The majority were females, Non-Hispanic Whites with no prior diagnosis of diabetes. Screenings showed that 61.8% of participants were at high risk for diabetes. Family history of diabetes (siblings or parents), overweight or obese status, sedentary lifestyle, and older age were commonly prevalent risk factors. Higher risk scores computed from the 7-item questions correlated positively with higher A1c (r = 0.221, P < 0.001). In multivariate logistic regression analyses, higher diabetes risk was predicted by obesity, older age, family history of hypertension, and gestational diabetes. Females were 4 times at higher risk than males. The findings indicated that community-based screenings were an effective way to assess diabetes risk in rural West Virginia. Linking diabetes screenings with referrals to lifestyle programs for high risk individuals can help reduce the burden of diabetes in the state.
The prolonged, post-weaning fast of northern elephant seal (Mirounga angustirostris) pups is characterized by a reliance on lipid metabolism and reversible, fasting-induced insulin resistance providing a unique model to examine the effects of insulin on lipid metabolism. We have previously shown that acute insulin infusion induced a shift in fatty acid metabolism dependent on fasting duration. This study complements the previous study by examining the effects of fasting duration and insulin infusion on circulating levels of oxylipins, bioactive metabolites derived from the oxygenation of polyunsaturated fatty acids. Northern elephant seal pups were studied at two post-weaning periods (n = 5/period): early fasting (1-2 weeks post-weaning; 127 ± 1 kg) and late fasting (6-7 weeks post-weaning; 93 ± 4 kg). Different cohorts of pups were weighed, sedated, and infused with 65 mU/kg of insulin. Plasma was collected prior to infusion (T0), and at 10, 30, 60, and 120 min post-infusion. A profile of ~80 oxylipins were analyzed by UPLC-ESI-MS/MS. Nine oxylipins changed between early and late fasting and eight were altered in response to insulin infusion. Fasting decreased PGF2a and increased 14,15-DiHETrE, 20-HETE, and 4-HDoHE (p<0.03) in T0 samples, while insulin infusion resulted in an inverse change in area under the curve (AUC) levels in these same metabolites (p<0.05). In addition, 12-HpETE and 12-HETE decreased with fasting and insulin infusion, respectively (p<0.04). The oxylipins altered during fasting and in response to insulin infusion may contribute to the manifestation of insulin resistance and participate in the metabolic regulation of associated cellular processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.