Time-resolved reflectivity measurements on silicon and germanium have been made during pulsed KrF excimer laser irradiation (248 nm). The reAectivity was measured simultaneously with probelaser wavelengths of 632.8 and 1152 nm, and the energy density of each laser pulse was recorded. From these measurements, we were able to determine the reAectivity of the hot solid just before the onset of melting, the reAectivity of the melt, the melt duration, and the time of the onset of melting. Melting-model calculations were also performed, with the reAectivity of solid and liquid Si and Ge treated as parameters for fitting the experimental values of the melt duration and the time of the onset of melting. The resulting parameter values are in agreement with those obtained from self-reAectivity measurements.Near the melting threshold, it was observed that the melt duration was never less than 20 ns for Si and 2S ns for Ge, while the maximum reAectivity increased from its value for the hot solid to that for the liquid over a finite energy range. These results, together with a reinterpretation of time-resolved ellipsometry measurements, indicate that, during the melt-in process, the near-surface region does not melt homogeneously, but rather consists of a mixture of solid and liquid phases.
Simultaneous infrared (1152 nm) and visible (633 nm) reflectivity measurements with nanosecond resolution were used to study the initial formation and subsequent motion of pulsed KrF laser-induced ‘‘explosively’’ propagating buried molten layers in ion implantation-amorphized silicon. The buried layer velocity decreases with depth below the surface, but increases with KrF laser energy density; a maximum velocity of about 14 m/s was observed, implying an undercooling-velocity relationship of ∼14 K/(m/s). Z-contrast scanning transmission electron microscopy was used to form a direct chemical image of implanted Cu ions transported by the buried layer and showed that the final buried layer thickness was <15 nm.
Transient optical absorption spectroscopy has been utilized for the first time to study the transport of ground-state Y, Ba, Cu, and Ba+ following excimer laser ablation of Y1Ba2Cu3O7−x pellets. Spectral broadening of the atomic lines monitored in both absorption and emission is reported, indicating the existence of gas phase collisions in the plume of ejected material. Time-of-flight velocity distributions of the nonemitting neutrals and ions determined by the absorption technique are broadened and shifted to lower velocities than the velocity distributions inferred from excited-state fluorescence in the plume. Absorption by ground-state Y+, YO, BaO, and CuO also has been observed with this technique. The absorption technique, and its application as an in situ monitor of neutral and ion transport during deposition of superconducting thin films, is described.
Nanosecond resolution time-resolved visible (632.8 nm) and infrared (1152 nm) reflectivity measurements, together with structural and Z-contrast transmission electron microscope (TEM) imaging, have been used to study pulsed laser melting and subsequent solidification of thick (190–410 nm) amorphous (a) Si layers produced by ion implantation. Melting was initiated using a KrF (248 nm) excimer laser of relatively long [45 ns full width half maximum (FWHM)] pulse duration; the microstructural and time-resolved measurements cover the entire energy density (E1) range from the onset of melting (at ∼ 0.12J/cm2) up to the onset of epitaxial regrowth (at ∼ 1.1 J/cm2). At low E1 the infrared reflectivity measurements were used to determine the time of formation, the velocity, and the final depth of “explosively” propagating buried liquid layers in 410 nm thick a-Si specimens that had been uniformly implanted with Si, Ge, or Cu over their upper ∼ 300 nm. Measured velocities lie in the 8–14 m/s range, with generally higher velocities obtained for the Ge- and Cu-implanted “a-Si alloys.” The velocity measurements result in an upper limit of 17 (± 3) K on the undercooling versus velocity relationship for an undercooled solidfying liquid-crystalline Si interface. The Z-contrast scanning TEM measurements of the final buried layer depth were in excellent agreement with the optical measurements. The TEM study also shows that the “fine-grained polycrystalline Si” region produced by explosive crystallization of a-Si actually contains large numbers of disk-shaped Si flakes that can be seen only in plan view. These Si flakes have highly amorphous centers and laterally increasing crystallinity; they apparently grow primarily in the lateral direction. Flakes having this structure were found both at the surface, at low laser E1, and also deep beneath the surface, throughout the “fine-grained poly-Si” region formed by explosive crystallization, at higher E1. Our conclusion that this region is partially amorphous (the centers of flakes) differs from earlier results. The combined structural and optical measurements suggest that Si flakes nucleate at the undercooled liquid-amorphous interface and are the crystallization events that initiate explosive crystallization. Time-resolved reflectivity measurements reveal that the surface melt duration of the 410 nm thick a-Si specimens increases rapidly for 0.3E1 <0.6 J/cm2, but then remains nearly constant for E1 up to ∼ 1.0 J/cm2. For 0.3 < E1 < 0.6 J/cm2 the reflectivity exhibits a slowly decaying behavior as the near-surface pool of liquid Si fills up with growing large grains of Si. For higher E1, a flat-topped reflectivity signal is obtained and the microstructural and optical studies together show that the principal process occurring is increasingly deep melting followed by more uniform regrowth of large grains back to the surface. However, cross-section TEM shows that a thin layer of fine-grained poly-Si still is formed deep beneath the surface for E1<0.9 J/cm2, implying that explosive crystallization occurs (probably early in the laser pulse) even at these high E1 values. The onset of epitaxial regrowth at E1 = 1.1 J/cm2 is marked by a slight decrease in surface melt duration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.