The recent detections of CNCN and HNCCN+ are seen as further evidence of the large abundance of NCCN in the interstellar medium. The accurate determination of the abundance of these chemically related compounds from the observational spectra requires the prior calculation of collisional rate coefficients. In this work, we aimed at computing hyperfine resolved rate coefficients for the CNCN–He collisional system. First, we determined a new potential energy surface for the CNCN–He van der Waals complex from which we computed rotationally resolved excitation cross sections for energies up to 800 cm−1 using the quantum mechanical close-coupling approach. Then, hyperfine resolved transitions between the 30 low-lying pure rotational levels of CNCN were computed for temperatures ranging from 5 K to 150 K using an improved infinite order sudden approach. The analysis of the scattering results showed a propensity rule in favour of Δj = ΔF1 = ΔF for the hyperfine transitions and a slight dominance of the odd Δj transitions. Using these data, we carried out non-LTE radiative transfer calculations to simulate the excitation of CNCN in molecular clouds and to constrain the physical conditions of cold dark clouds. Preliminary results showed that the abundance of CNCN derived from observational spectra has to be revisited using these new collisional data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.