A simple two-step plasmachemical methodology is outlined for the fabrication of microcondensor surfaces. This comprises the creation of a superhydrophobic background followed by pulsed plasma deposition of a hydrophilic polymer array. Microcondensation efficiency has been explored in terms of the chemical nature of the hydrophilic pixels and their dimensions. These results are compared to the hydrophilic-hydrophobic pattern present on the Stenocara beetle's back, which is used by the insect to collect water in the desert. Potential applications include fog harvesting, microfluidics, and biomolecule immobilization.
Repetitive bursts of continuous wave plasma polymerization on the minute time scale are
found to lead to the deposition of well-defined polymeric nanospheres. This unique mode of
film growth is attributed to a high level of monomer replenishment in combination with
minimal secondary reaction processes (e.g., fragmentation, cross-linking, and etching). In
the case of the 1H,1H,2H,2H-perfluorooctyl acrylate precursor, high contact angle (super-hydrophobic) surfaces are produced by this method.
The surfaces of standard untreated polystyrene cell culture dishes have been oxidatively modified for up to 8 min exposure time using an ultraviolet ozone treater in order to promote cell adhesion. Surface oxygen chemisorption and topographical modification has been characterized using monochromatic X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM), respectively. The oxidation process is shown to proceed at low exposure times (<60 s) via the formation of CsOR groups, although some R2CdO and RO-CdO groups are also formed. At longer treatments, RO-CdO groups become the dominant species, although the other groups are also present. The maximum level of oxygen reached is 36 atomic %. Some of the oxygen present at surfaces treated at times of >60 s is in the form of loosely bound low molecular weight oxidized material (LMWOM) which is produced by oxidative scission of the PS backbone. Water washing leads to a reduction in surface oxygen content mainly by the removal of ROsCdO and R2CdO functional groups. The residual stable oxygen levels, which can be introduced, are approximately 20-25 atomic %. Surface chemistry changes are accompanied by the formation of surface spikes which are about 30 nm high and 300-400 nm wide. A correlation between treatment time/oxygen level and overall roughness is observed. The effect of washing upon the topography is to slightly increase the surface roughness, although not to a significant degree. The attachment kinetics of adhesion for Chinese hamster ovary cells show that adhesion occurs much more rapidly for oxidized surfaces than for untreated control materials. A direct correlation between the levels of oxidation and the rate of cell adhesion is demonstrated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.