By making use of a covariant formulation of the chiral kinetic theory in the relaxation-time approximation, we derive the first-order dissipative hydrodynamics equations for a charged chiral plasma with background electromagnetic fields. We identify the global equilibrium state for a rotating chiral plasma confined to a cylindrical region with realistic boundary conditions. Then, by using linearized hydrodynamic equations, supplemented by the Maxwell equations, we study hydrodynamic modes of magnetized rotating chiral plasma in the regimes of high temperature and high density. We find that, in both regimes, dynamical electromagnetism has profound effects on the spectrum of propagating modes. In particular, there are only the sound and Alfvén waves in the regime of high temperature, and the plasmons and helicons at high density. We also show that the chiral magnetic wave is universally overdamped because of high electrical conductivity in plasma that causes an efficient screening of charge fluctuations. The physics implications of the main results are briefly discussed.
About eight years ago it was predicted theoretically that a charged chiral plasma could support the propagation of the so-called chiral magnetic waves, which are driven by the anomalous chiral magnetic and chiral separation effects. This prompted intensive experimental efforts in search of signatures of such waves in relativistic heavy-ion collisions. In fact, several experiments have already reported a tentative detection of the predicted signal, albeit with a significant background contribution. Here, we critically reanalyze the theoretical foundations for the existence of the chiral magnetic waves. We find that the commonly used background-field approximation is not sufficient for treating the waves in hot chiral plasmas in the long-wavelength limit. Indeed, the back-reaction from dynamically induced electromagnetic fields turns the chiral magnetic wave into a diffusive mode. While the situation is slightly better in the strongly-coupled near-critical regime of quark-gluon plasma created in heavy-ion collisions, the chiral magnetic wave is still strongly overdamped due to the effects of electrical conductivity and charge diffusion. XIII Quark Confinement and the Hadron
By making use of the chiral kinetic theory in the relaxation-time approximation, we derive an Israel-Stewart type formulation of the hydrodynamic equations for a chiral relativistic plasma made of neutral particles (e.g., neutrinos). The effects of chiral asymmetry are captured by including an additional continuity equation for the axial charge, as well as the leading-order quantum corrections due to the spin of particles. In a formulation of the chiral kinetic theory used, we introduce a symmetric form of the energy-momentum tensor that is suitable for the description of a weakly nonuniform chiral plasma. By construction, the energy and momentum are conserved to the same leading order in the Planck constant as the kinetic equation itself. By making use of such a chiral kinetic theory and the Chapman-Enskog approach, we obtain a set of second-order dissipative hydrodynamic equations. The effects of the fluid vorticity and velocity fluctuations on the dispersion relations of chiral vortical waves are analyzed.
The gap equation for Dirac quasiparticles in monolayer graphene in constant magnetic and pseudomagnetic fields, where the latter is due to strain, is studied in a low-energy effective model with contact interactions. Analyzing solutions of the gap equation, the phase diagram of the system in the plane of pseudomagnetic and parallel magnetic fields is obtained in the approximation of the lowest Landau level. The three quantum Hall states, ferromagnetic, antiferromagnetic, and canted antiferromagnetic, are realized in different regions of the phase diagram. It is found that the structure of the phase diagram is sensitive to signs and values of certain four-fermion interaction couplings which break the approximate spin-value SU (4) symmetry of the model.
The fermion self-energy is calculated for a cold QED plasma with chiral chemical potential in a magnetic field. It is found that a momentum shift parameter dynamically generated in such a plasma leads to a modification of the chiral magnetic effect current. It is argued that the momentum shift parameter can be relevant for the evolution of magnetic field in the chirally asymmetric primordial plasma in the early Universe.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.