We demonstrate the growth features of III-nitrides on graphene buffer layers obtained by the CVD method on a copper catalyst with different dominant grain orientations. The reflection high-energy electron diffraction technique (RHEED) is used to map the 2D reciprocal space structures of graphene buffers and growing nitride layers. The RHEED reciprocal space pattern for the graphene layer grown on a (111) textured copper foil and transferred to a SiO2/Si substrate demonstrates the sixfold symmetry characteristic of a highly oriented material. In turn, graphene grown on a Cu (100) foil consists of two types of domains that are 30° rotated relative to each other. It has also been demonstrated that III-nitride films exactly repeat the texture of the 2D graphene buffers. The GaN sample grown over the highly textured substrate demonstrates a clear sixfold symmetry of the RHEED reciprocal space map as well as {101¯3} XRD pole figure, which is close to 2D surface morphology. In turn, the GaN film grown over the graphene buffer layer transferred from the Cu (100) textured foil has 12-fold axial symmetry, which is equivalent to the essentially two-domain in-plane orientation of the initial graphene.
The possibility of using chemical vapor deposition (CVD) graphene as a 2D buffer layer for epitaxial growth of III-nitrides by plasma assisted-MBE on amorphous substrates (SiO 2 prepared by thermal oxidation of Si wafer) was investigated. The comparative study of graphene-coated parts of the wafers and the parts without graphene was carried out by scanning electron microscopy and X-ray diffractometry. It was shown that epitaxial GaN and AlN films with close to 2D surface morphology can be obtained by plasma assisted-MBE on amorphous SiO 2 substrates with a multilayer graphene buffer using the HT AlN nucleation layer.
Single-layer (SLG)/few-layer (FLG) and multilayer graphene (MLG) (>15 layers) samples were obtained using the CVD method on high-textured Cu foil catalysts. In turn, plasma-assisted molecular beam epitaxy was applied to carry out the GaN graphene-assisted growth. A thin AlN layer was used at the initial stage to promote the nucleation process. The effect of graphene defectiveness and thickness on the quality of the GaN epilayers was studied. The bilayer graphene showed the lowest strain and provided optimal conditions for the growth of GaN/AlN. Theoretical studies based on the density functional theory have shown that the energy of interaction between graphene and AlN is almost the same as between graphite sheets (194 mJ/m2). However, the presence of vacancies and other defects as well as compression-induced ripples and nitrogen doping leads to a significant change in this energy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.