Abstract. The XMM-OM instrument extends the spectral coverage of the XMM-Newton observatory into the ultraviolet and optical range. It provides imaging and time-resolved data on targets simultaneously with observations in the EPIC and RGS. It also has the ability to track stars in its field of view, thus providing an improved post-facto aspect solution for the spacecraft. An overview of the XMM-OM and its operation is given, together with current information on the performance of the instrument.
We report on the γ-ray activity of the blazar Mrk 501 during the first 480 days of Fermi operation. We find that the average Large Area Telescope (LAT) γ-ray spectrum of Mrk 501 can be well described by a single power-law function with a photon index of 1.78 ± 0.03. While we observe relatively mild flux variations with the Fermi-LAT (within less than a factor of two), we detect remarkable spectral variability where the hardest observed spectral index within the LAT energy range is 1.52 ± 0.14, and the softest one is 2.51 ± 0.20. These unexpected spectral changes do not correlate with the measured flux variations above 0.3 GeV. In this paper, we also present the first results from the 4.5 month long multifrequency campaign (2009 March 15-August 1) on Mrk 501, which included the Very Long Baseline Array (VLBA), Swift, RXTE, MAGIC, and VERITAS, the F-GAMMA, GASP-WEBT, and other collaborations and instruments which provided excellent temporal and energy coverage of the source throughout the entire campaign. The extensive radio to TeV data set from this campaign provides us with the most detailed spectral energy distribution yet collected for this source during its relatively low activity. The average spectral energy distribution of Mrk 501 is well described by the standard one-zone synchrotron self-Compton (SSC) model. In the framework of this model, we find that the dominant emission region is characterized by a size 0.1 pc (comparable within a factor of few to the size of the partially resolved VLBA core at 15-43 GHz), and that the total jet power (10 44 erg s −1) constitutes only a small fraction (∼10 −3) of the Eddington luminosity. The energy distribution of the freshly accelerated radiating electrons required to fit the time-averaged data has a broken power-law form in the energy range 0.3 GeV-10 TeV, with spectral indices 2.2 and 2.7 below and above the break energy of 20 GeV. We argue that such a form is consistent with a scenario in which the bulk of the energy dissipation within the dominant emission zone of Mrk 501 is due to relativistic, proton-mediated shocks. We find that the ultrarelativistic electrons and mildly relativistic protons within the blazar zone, if comparable in number, are in approximate energy equipartition, with their energy dominating the jet magnetic field energy by about two orders of magnitude.
LS I +61 303 is one of only a few high-mass X-ray binaries currently detected at high significance in very high energy -rays. The system was observed over several orbital cycles (between 2006 September and 2007 February) with the VERITAS array of imaging air Cerenkov telescopes. A signal of -rays with energies above 300 GeV is found with a statistical significance of 8.4 standard deviations. The detected flux is measured to be strongly variable; the maximum flux is found during most orbital cycles at apastron. The energy spectrum for the period of maximum emission can be characterized by a power law with a photon index of À ¼ 2:40 AE 0:16 stat AE 0:2 sys and a flux above 300 GeV corresponding to 15%-20% of the flux from the Crab Nebula.
We report on TeV γ -ray observations of the blazar Mrk 421 (redshift of 0.031) with the VERITAS observatory and the Whipple 10 m Cherenkov telescope. The excellent sensitivity of VERITAS allowed us to sample the TeV γ -ray fluxes and energy spectra with unprecedented accuracy where Mrk 421 was detected in each of the pointings. A total of 47.3 hr of VERITAS and 96 hr of Whipple 10 m data were acquired between 2006 January and 2008 June. We present the results of a study of the TeV γ -ray energy spectra as a function of time and for different flux levels. On 2008 May 2 and 3, bright TeV γ -ray flares were detected with fluxes reaching the level of 10 Crab. The TeV γ -ray data were complemented with radio, optical, and X-ray observations, with flux variability found in all bands except for the radio wave band. The combination of the Rossi X-ray Timing Explorer and Swift X-ray data reveal spectral hardening with increasing flux levels, often correlated with an increase of the source activity in TeV 1 The Astrophysical Journal, 738:25 (19pp), 2011 September 1 Acciari et al.γ -rays. Contemporaneous spectral energy distributions were generated for 18 nights, each of which are reasonably described by a one-zone synchrotron self-Compton model.
We present a spectral analysis of XMM-Newton data of ten dwarf novae, nine of which were observed during a quiescent state. The X-ray spectra indicate the presence of a hot, optically thin plasma with a temperature distribution consistent with a simple, isobaric cooling flow. The likely origin of the X-ray emission is cooling plasma in the boundary layer settling onto the white dwarf. Using a cooling flow model, we derive the temperatures, accretion rates, rotational velocities, and elemental abundances of the X-ray emitting gas. We discuss the implications of our findings for the structure of the boundary layer. A comparison of X-ray and ultraviolet luminosities finds no evidence of underluminous boundary layers
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.