Alzheimer's disease (AD) accounts for a significant proportion of long-term care costs. The recent discovery that the e4 allele of the ApoE gene indicates a predisposition to earlier onset of AD raises questions about the potential for adverse selection in long-term care insurance, about long-term care costs in general, and about the potential effects on costs of gene therapy, or better targetted treatments for AD. This paper describes a simple Markov model for AD, and the estimation of the transition intensities from the medical and epidemiological literature.
The UK Biobank project is a proposed large-scale investigation of the combined effects of genotype and environmental exposures on the risk of common diseases. It is intended to recruit 500,000 subjects aged 40-69, to obtain medical histories and blood samples at outset, and to follow them up for at least 10 years. This will have a major impact on our knowledge of multifactorial genetic disorders, rather than the rare but severe single-gene disorders that have been studied to date. What use may insurance companies make of this knowledge, particularly if genetic tests can identify persons at different risk? We describe here a simulation study of the UK Biobank project. We specify a simple hypothetical model of genetic and environmental influences on the risk of heart attack. A single simulation of UK Biobank consists of 500,000 life histories over 10 years; we suppose that case-control studies are carried out to estimate age-specific odds ratios, and that an actuary uses these odds ratios to parameterise a model of critical illness insurance. From a large number of such simulations we obtain sampling distributions of premium rates in different strata defined by genotype and environmental exposure. We conclude that the ability of such a study reliably to discriminate between different underwriting classes is limited, and depends on large numbers of cases being analysed.
The UK Biobank project is a proposed large-scale investigation of the combined effects of genotype and environmental exposures on the risk of common diseases. It is intended to recruit 500,000 subjects aged 40-69, to obtain medical histories and blood samples at outset, and to follow them up for at least 10 years. This will have a major impact on our knowledge of multifactorial genetic disorders, rather than the rare but severe single-gene disorders that have been studied to date. What use may insurance companies make of this knowledge, particularly if genetic tests can identify persons at different risk? We describe here a simulation study of the UK Biobank project. We specify a simple hypothetical model of genetic and environmental influences on the risk of heart attack. A single simulation of UK Biobank consists of 500,000 life histories over 10 years; we suppose that case-control studies are carried out to estimate agespecific odds ratios, and that an actuary uses these odds ratios to parameterise a model of critical illness insurance. From a large number of such simulations we obtain sampling distributions of premium rates in different strata defined by genotype and environmental exposure. We conclude that the ability of such a study reliably to discriminate between different underwriting classes is limited, and depends on large numbers of cases being analysed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.