This study aims to identify special metabolites in polar extracts from Urochloa humidicola (synonym Brachiaria humidicola) that have allelopathic effects and induce secondary photosensitization in ruminants. The compounds were isolated and identified via chromatographic and spectroscopic techniques. The compounds 4-hydroxy-3-methoxy-benzoic acid, trans-4-hydroxycinnamic acid, and p-hydroxy-benzoic acid; the flavonols isorhamnetin-3-O-β-d-glucopyranoside and methyl quercetin-3-O-β-d-glucuronate; and kaempferitrin, quercetin-3-O-α-l-rhamnopyranoside, and tricin were identified in the extract from the leaves of Urochloa humidicola. Two furostanic saponins, namely, dioscin and 3-O-α-l-rhamnopyranosyl-(1-4)-[α-l-rhamnopyranosyl-(1-2)]-β-d-glucopyranosyl-penogenin, as well as catechin-7-O-β-dglucopyranoside were identified in the methanolic extract obtained from the roots of this plant. This species features a range of metabolites that may be toxic for animals if used in food and may interfere with the growth medium, thereby inhibiting the development of other species.
The aim of this study was to identify the main classes of secondary metabolites present in the root and shoot crude extracts and fractions from the forage grass Urochloa humidicola (Rendle) Morrone & Zuloaga and to evaluate the allelopathic effect of these metabolites on forage legumes for intercropping. Phytochemical prospecting analyses, 1 H NMR and capillary electrophoresis were performed on extracts of U. humidicola. Allelopathic activity was evaluated in germination of Stylosanthes, Macrotyloma axillare and Lactuca sativa L. (standard) in the presence of crude extracts, isolated saponins, flavonoids and trans-cinnamic acid. The metabolite classes present in the extracts could be determined by the combined use of the tested analytical techniques, but their use alone was usually not sufficient to chemically characterize the species. Capillary electrophoresis was effective in detecting phenolic compounds. Macrotyloma axillare was tolerant to crude extracts of U. humidicola.Saponins and trans-cinnamic acid, but not the flavonoids, reduced germination of the target plants.
Phytochemical studies of Cespedesia spathulata (Ochnaceae) leaves using 1 H, 13 C NMR, and GC-MS have led to the isolation of some metabolites identifi ed for the fi rst time in these species such as cathechin, epicatechin, vitexin, orientin, 6''-O-acetylvitexin, sitosterol, stigmasterol, phytol, 4,5-dihydrovomifoliol and a mixture of aliphatic methyl esters, together with ochnafl avone, which was previously isolated from this plant.The modulating activity of some fractions and compounds from Cespedesia spathulata towards tyrosinase enzyme was assayed by spectroscopic and theoretical means/ experiments. The dichloromethane fraction (133 μg mL -1 ) and ochnafl avone (333 μM) inhibited tyrosinase activity by 20 % and 2.0 %, respectively, whereas the ethyl acetate fraction (666 μg mL -1 ) and ±catechins (catechin and epicatechin -800 μM) activated it by 104 % and 384 %, respectively. Quantum chemical calculations suggested that catechin and epicatechin are better activators than L-DOPA by interacting with Cu (II) ions. Molecular docking results suggested that hydrogen bonding and hydrophobic interactions are the main binding forces between each tyrosinase activator and the amino acid residues inside the active protein binding pocket.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.