Stem rust (caused by Puccinia graminis Pers.:Pers. f. sp. tritici Eriks. & E. Henn.) has re-emerged as a threat to wheat production with the evolution of new pathogen races, namely TTKSK (Ug99) and its variants, in Africa. Deployment of resistant wheat cultivars has provided long-term control of stem rust. Identification of new resistance genes will contribute to future cultivars with broad resistance to stem rust. The related Canadian cultivars Peace and AC Cadillac show resistance to Ug99 at the seedling stage and in the field. The purpose of this study was to elucidate the inheritance and genetically map resistance to Ug99 in these two cultivars. Two populations were produced, an F(2:3) population from LMPG/AC Cadillac and a doubled haploid (DH) population from RL6071/Peace. Both populations showed segregation at the seedling stage for a single stem rust resistance (Sr) gene, temporarily named SrCad. SrCad was mapped to chromosome 6DS in both populations with microsatellite markers and a marker (FSD_RSA) that is tightly linked to the common bunt resistance gene Bt10. FSD_RSA was the closest marker to SrCad (≈ 1.6 cM). Evaluation of the RL6071/Peace DH population and a second DH population, AC Karma/87E03-S2B1, in Kenya showed that the combination of SrCad and leaf rust resistance gene Lr34 provided a high level of resistance to Ug99-type races in the field, whereas in the absence of Lr34 SrCad conferred moderate resistance. A survey confirmed that SrCad is the basis for all of the seedling resistance to Ug99 in Canadian wheat cultivars. While further study is needed to determine the relationship between SrCad and other Sr genes on chromosome 6DS, SrCad represents a valuable genetic resource for producing stem rust resistant wheat cultivars.
In earlier work it had been found that Agatha, a wheat-Agropyron derivative carrying gene Lr19 for leaf rust (Puccinia recondita Rob. ex Desm.) resistance, also carried an undesirable gene for yellow flour pigment. Agatha was treated with ethyl methanesulphonate in an attempt to mutate the gene for yellow pigment. The M2 plants were tested for pigment levels, plants that appeared to be low were selected and the results confirmed on their M3 progeny. Two apparent mutants with low pigment levels were obtained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.