Measurements have been made of the ultrasonic velocity in thirty-four organic liquids over a temperature range of 0−60°C by use of a variable-path ultrasonic interferometer operating at 500,000 cycles per second. For all of the liquids studied the relation between velocity and temperature was found to be essentially linear. Values of density, adiabatic compressibility, and temperature coefficient (ΔV/ΔT) are also reported. It was found that the successive substitution of a heavier atom in a molecule leads to successively smaller temperature coefficients. It is pointed out that the temperature coefficient of ultrasonic velocity appears to be inversely proportional to the square root of the molecular weight, to a fair degree of accuracy.
The ultrasonic velocity for the temperature range 10° to 30°C has been measured for seven members of a 1-olefin series. Densities and refractive indices were also measured. From the measurements, values of the molecular sound velocity, adiabatic compressibility, and molecular refractivity were computed. The ultrasonic velocity is found to vary linearly with temperature, while the molecular constant, MV⅓/d, remains substantially constant. The constant is found to be strictly additive for the series members studied.
An acoustic interferometer of improved design and the associated electronic circuit for measurement of ultrasonic velocities in liquids are described. A beat frequency oscillator is used to generate the ultrasonic waves in the liquid, and a vacuum-tube voltmeter is employed as a detector of nodal positions. In order to secure adequate stability an electronically stabilized power supply is used. Measurements of velocities in acetone, benzene, and distilled water are compared with earlier workers and new measurements for heavy water at 5°, 10°, and 15°C are tabulated.
Introduction: Impaired or inappropriate immune reconstitution after allogeneic bone marrow transplantation (BMT) can lead to infection, graft-versus-host disease (GvHD) and leukemia relapse. We have previously reported that BM contains two populations of dendritic cell (DC) subsets, CD11b+ DC and CD11b− DC, and that CD11b depleted donor BM promoted increased donor T-cell chimerism and increased graft-versus-leukemia (GvL) activity in C57BL/6 → B10BR transplants [BBMT, 2004, 10: 540]. To explore the mechanism by which CD11b-depletion improved allo-reactivity, we performed allogeneic hematopoietic cell transplants using defined populations of donor stem cells, DCs, and T-cells in a MHC mis-matched BMT model. Methods: We transplanted FACS purified populations of 50,000 GFP+ CD11b- DC or CD11b+ DC in combination with 5,000 FACS purified Lin- Sca-1+ c-kit+ hematopoietic stem cells (HSC) and 300,000 or 1,000,000 congenic spleen T-cells from C57BL/6 donors into C57BL/6[H-2Kb], B10BR[H-2Kk] and PL/J[H-2Ku] recipients. Proliferation of CFSE stained donor T-cells was measured at 72 hours post-transplant. FACS cytometric bead array and intracellular cytokine staining measured serum and intracellular cytokines in donor T-cells. Results: The initial proliferation and Ki-67 expression of CFSE labeled donor T-cells in allogeneic recipients were much higher than in syngeneic recipients (homeostatic proliferation). Confocal microscopy showed co-localization of donor DC subsets with donor T-cells in the recipient spleens at 3 and 10 days post-transplant. In the allogeneic transplant settings, donor T-cells co-transplanted with CD11b- DC showed increased IFN-γ synthesis at 3 and 10 days post-transplant compared to donor T-cells co-transplanted with HSC plus CD11b+ DC or HSC alone. Increased proliferation of donor T-cells led to increased donor T-cell chimerism at day 10, 30, 60, and day105 post-transplant among recipients of CD11b- DC compared to recipients of HSC alone or HSC plus CD11b+ DC (Figure 1). Transplantation of spleen T-cells and CD11b- DC did not increase GvHD, but was associated with full donor chimerism. In contrast, transplantation of allogeneic CD11b+ DC led to persistence and expansion of residual host T-cells (Figure 2), increased numbers of donor CD4+CD25++Foxp3+ T-cells, and higher serum level of IL-10 supporting early post-transplant expansion of donor T regulatory cells (Treg). Conclusions: Donor CD11b- DC promoted immune reconstitution by polarizing donor T-cells to Th1 immune responses associated with increased IFN-γ synthesis and donor T-cell proliferation, while donor CD11b+ DC suppressed immune reconstitution by inhibiting donor T-cell allogeneic immune responses. These data support a novel paradigm for the regulation of post-transplant immunity and suggest clinical methods to test the hypothesis that manipulation of the DC content of a hematopoietic cell allograft regulates post transplant immunity in the clinical setting. Figure 1. Donor Spleen Derived T-cells in Peripheral Blood [* p<0.05, v.s. recipients of HSC plus CD11b(+)DC and spleen T-cells] Figure 1. Donor Spleen Derived T-cells in Peripheral Blood [* p<0.05, v.s. recipients of HSC plus CD11b(+)DC and spleen T-cells] Figure 2. Host Derived T-cells in Peripheral Blood [* p<0.05, v.s. recipients of HSC plus CD11b(-)DC and spleen T-cells] Figure 2. Host Derived T-cells in Peripheral Blood [* p<0.05, v.s. recipients of HSC plus CD11b(-)DC and spleen T-cells]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.