Results from the tandem mirror experiment are described. The configuration of axial density and potential profiles are created and sustained by neutral-beam injection and gas fueling. Plasma confinement in the center cell is shown to be improved by the end plugs by as much as a factor of 9. The electron temperature is higher than that achieved in our earlier 2XIIB single-cell mirror experiment.PACS numbers: 52.55. Mg, 52.55.Ke This Letter reports the first results obtained from the tandem mirror experiment (TMX) at the Lawrence Livermore Laboratory. Steady-state tandem-mirror plasmas have been produced and an electrostatic barrier that improves plasma confinement has been observed. The tandem-mirror configuration 1 ' 2 can enhance the performance of a magnetic-mirror thermonuclear reactor. Such a reactor would produce power in a cylindrical, high-/3, magnetic solenoid. End losses from this center cell are reduced by electrostatic endplug barriers of positive potential, which turn back those low-energy ions which escape through the magnetic mirror. These potential barriers are established on both ends of the center cell by high-density, high-temperature, mirror-confined plasmas, which have a larger ambipolar potential than does the center-cell plasma.Earlier tandem-mirror experiments, 3 in which plasma guns were used to establish end-plug densities larger than those in the center cell, have produced potential wells. Langmuir-probe measurements indicated that the magnitude and scaling of the potential-well depth is consistent with theoretical predictions. Our results demonstrate that we can produce and sustain a tandem-mirror plasma configuration by use of neutral beams to fuel the end plugs and gas to fuel the center cell. This method can be extrapolated to continuously operated systems. Our experiments further demonCee coil Baseball coilSolenoid coils Octupole coil -Plasma flux tube 1132 Neutral beam injectors Startup plasma guns FIG. 1. Schematic diagram of TMX magnet and neutral-beam system.
The PLEIADES ͑Picosecond Laser-Electron InterAction for the Dynamical Evaluation of Structures͒ facility has produced first light at 70 keV. This milestone offers a new opportunity to develop laser-driven, compact, tunable x-ray sources for critical applications such as diagnostics for the National Ignition Facility and time-resolved material studies. The electron beam was focused to 50 m rms, at 57 MeV, with 260 pC of charge, a relative energy spread of 0.2%, and a normalized emittance of 5 mm mrad horizontally and 13 mm mrad vertically. The scattered 820 nm laser pulse had an energy of 180 mJ and a duration of 54 fs. Initial x rays were captured with a cooled charge-coupled device using a cesium iodide scintillator; the peak photon energy was approximately 78 keV, with a total x-ray flux of 1.3ϫ10 6 photons/shot, and the observed angular distribution found to agree very well with three-dimensional codes. Simple K-edge radiography of a tantalum foil showed good agreement with the theoretical divergence-angle dependence of the x-ray energy. Optimization of the x-ray dose is currently under way, with the goal of reaching 10 8 photons/shot and a peak brightness approaching 10 20 photons/mm 2 /mrad 2 /s/0.1% bandwidth.
We present a detailed comparison of the measured characteristics of Thomson backscattered x rays produced at the Picosecond Laser-Electron Interaction for the Dynamic Evaluation of Structures facility at Lawrence Livermore National Laboratory to predicted results from a newly developed, fully three-dimensional time and frequency-domain code. Based on the relativistic differential cross section, this code has the capability to calculate time and space dependent spectra of the x-ray photons produced from linear Thomson scattering for both bandwidth-limited and chirped incident laser pulses. Spectral broadening of the scattered x-ray pulse resulting from the incident laser bandwidth, perpendicular wave vector components in the laser focus, and the transverse and longitudinal phase spaces of the electron beam are included. Electron beam energy, energy spread, and transverse phase space measurements of the electron beam at the interaction point are presented, and the corresponding predicted x-ray characteristics are determined. In addition, time-integrated measurements of the x rays produced from the interaction are presented and shown to agree well with the simulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.