A versatile, microprocessor-based stimulator for skeletal muscle cardiac assist (SMCA) has been designed, constructed, and used in several studies. The stimulator uses multiple bipolar electrodes to deliver arbitrarily specified electrical stimulus sequences to three nerve branches of the latissimus dorsi muscle. The electrodes are electrically isolated to effect regional stimulation of the muscle. The width, amplitude, and interpulse interval of each pulse in the stimulus sequence are independently variable, and the three channels are independently programmable, allowing a wide variety of stimulus patterns. Battery powered units have been used in studies for up to one year. In this paper, the stimulator and sample applications in SMCA are described.
The contractile power of the latissimus dorsi muscle (LDM) is used in skeletal muscle cardiac assist (SMCA) to augment the blood pumping ability of a failing heart. The LDM has three anatomically distinct, independently innervate segments-the transverse, oblique, and lateral. There are potential advantages to selectively stimulating these LDM regions. We hypothesized that (1) the three nerve branches could be stimulated selectively to activate individual muscle regions with little or no functional overlap, (2) the three muscle regions would generate similar force, and (3) nerves stimulated in combinations would generate forces corresponding to the sum of forces generated by the individual regions. In acute studies of canine LDM (n=5), regional electromyogram (EMG) and isometric force were recorded while branches of the thoracodorsal nerve were stimulated (via nerve-cuff electrodes) individually and in combinations. Analysis of regional EMG and force confirmed selective activation. Stimulation of lateral, oblique, and transverse branches of thoracodorsal nerve activated 53+/-5%, 20+/-9%, and 36+/-9% of the muscle, respectively; with corresponding developed forces of 48+/-6%, 21+/-8%, and 31+/-8% of total muscle force (R=0.98, p<0.05). Selective activation of LDM is possible with little or no functional overlap; however, the muscle regions were nonuniform. Selective stimulation may ultimately facilitate the use of performance enhancing stimulus protocols for SMCA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.