Catechol-O-methyltransferase (COMT, EC 2.1.1.6) is a ubiquitous enzyme that is crucial to the metabolism of carcinogenic catechols and catecholamines. Regulation of human COMT gene expression may be important in the pathophysiology of various human disorders including estrogen-induced cancers, Parkinson's disease, depression, and hypertension. The gender difference in human COMT activity and variations in rat COMT activity during the estrous cycle led us to explore whether estrogen can regulate human COMT gene transcription. Our Northern analyses showed that physiological concentrations of 17--estradiol (10 Ϫ9 -10 Ϫ7 M) could decrease human 1.3-kilobase COMT mRNA levels in MCF-7 cells in a time-and dosedependent manner through an estrogen receptor-dependent mechanism. Two DNA fragments immediately 5Ј to the published human COMT gene proximal and distal promoters were cloned. Sequence analyses revealed several half-palindromic estrogen response elements and CCAAT/enhancer binding protein sites. By cotransfecting COMT promoter-chloramphenicol acetyltransferase reporter genes with human estrogen receptor cDNA and pSV--galactosidase plasmids into COS-7 cells, we showed that 17--estradiol could down-regulate chloramphenicol acetyltransferase activities, and COMT promoter activities dose-dependently. Functional deletion analyses of COMT promoters also showed that this estrogenic effect was mediated by a 280 base pair fragment with two putative half-palindromic estrogen response elements in the proximal promoter and a 323-base pair fragment with two putative CCAAT/enhancer binding protein sites in the distal promoter. Our findings provide the first evidence and molecular mechanism for estrogen to inhibit COMT gene transcription, which may shed new insight into the role of estrogen in the pathophysiology of different human disorders.Catechol-O-methyltransferase (COMT) is a ubiquitous enzyme that catalyzes the transfer of the methyl group from the coenzyme S-adenosyl-L-methionine (SAM) to one of the hydroxyl groups of catechols in the presence of Mg 2ϩ (Guldberg and Marsden, 1975). There are two isoforms of COMT of similar function: soluble and membrane-bound (MB). They are encoded by two transcripts [1.3 and 1.5 kilobase (kb) in human] regulated by the proximal and distal promoters, respectively (Tenhunen et al., 1994). The structural differences between these two human transcripts are a 5Ј extension of 150 base pairs (bp), which codes for a signal-anchor domain to direct the MB-COMT polypeptide to membranes, and the presence of a 5Ј noncoding region in the 1.5-kb transcript (Tenhunen et al., 1994).COMT may play an important role in the pathophysiology of different human disorders including estrogen-induced cancers, Parkinson's disease, depression, and hypertension, because the substrates of COMT are catechol estrogens (e.g., carcinogenic 4-hydroxyestradiol), indolic intermediates in melanin metabolism, xenobiotic catechols (e.g., carcinogenic flavonoids), catechol neurotransmitters (e.g., dopamine and noradr...
Background Parkinson’s disease (PD) is characterized by dopaminergic neuronal loss in the substantia nigra pars compacta and intracellular inclusions called Lewy bodies (LB). During the course of disease, misfolded α-synuclein, the major constituent of LB, spreads to different regions of the brain in a prion-like fashion, giving rise to successive non-motor and motor symptoms. Etiology is likely multifactorial, and involves interplay among aging, genetic susceptibility and environmental factors. Main body The prevalence of PD rises exponentially with age, and aging is associated with impairment of cellular pathways which increases susceptibility of dopaminergic neurons to cell death. However, the majority of those over the age of 80 do not have PD, thus other factors in addition to aging are needed to cause disease. Discovery of neurotoxins which can result in parkinsonism led to efforts in identifying environmental factors which may influence PD risk. Nevertheless, the causality of most environmental factors is not conclusively established, and alternative explanations such as reverse causality and recall bias cannot be excluded. The lack of geographic clusters and conjugal cases also go against environmental toxins as a major cause of PD. Rare mutations as well as common variants in genes such as SNCA, LRRK2 and GBA are associated with risk of PD, but Mendelian causes collectively only account for 5% of PD and common polymorphisms are associated with small increase in PD risk. Heritability of PD has been estimated to be around 30%. Thus, aging, genetics and environmental factors each alone is rarely sufficient to cause PD for most patients. Conclusion PD is a multifactorial disorder involving interplay of aging, genetics and environmental factors. This has implications on the development of appropriate animal models of PD which take all these factors into account. Common converging pathways likely include mitochondrial dysfunction, impaired autophagy, oxidative stress and neuroinflammation, which are associated with the accumulation and spread of misfolded α-synuclein and neurodegeneration. Understanding the mechanisms involved in the initiation and progression of PD may lead to potential therapeutic targets to prevent PD or modify its course.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.