The analysis of casein polymorphisms in goat species is rather difficult, because of a large number of mutations at each locus, and the tight linkage involving the 4 casein genes. Three goat breeds from Northern Italy, Orobica, Verzasca, and Frisa, were analyzed at the casein complex by milk isoelectrofocusing and analyses at the DNA level to identify the majority of all known polymorphisms. The casein gene structure of the 3 local breeds at alpha(S1)-casein (CSN1S1), beta-casein (CSN2), alpha(S2)-casein (CSN1S2), and kappa-casein (CSN3) was compared with that of Camosciata, a more widely distributed breed. A new allele was identified and characterized at CSN2 gene, which seemed to be specific to the Frisa breed. It was named CSN2*E, and was characterized by a transversion TCT --> TAT responsible for the amino acid exchange Ser(166) --> Tyr(166) in the mature protein. The casein haplotype structure is highly different among breeds. A total of 26 haplotypes showed a frequency higher than 0.01 in at least 1 of the 4 breeds considered, with 12, 3, 5, and 19 haplotypes in Frisa, Orobica, Verzasca, and Camosciata breeds, respectively. Only 13 haplotypes occurred at a frequency higher than 0.05 in at least 1 breed. With the molecular knowledge of each locus, the ancestral haplotype coding for CSN1S1*B, CSN2*A, CSN1S2*A, and CSN3*B protein variants can be postulated. A protein evolutionary model considering the whole casein haplotype is proposed.
The analysis of casein polymorphisms was carried out in West Africa goat populations: Red Sokoto (n = 57), West African Dwarf Nigeria (n = 27), West African Dwarf Cameroon (n = 39), and Borno (n = 37). The 4 casein genes alpha(s1) (CSN1S1), beta (CSN2), alpha(s2) (CSN1S2), and kappa (CSN3) were typed at the DNA level. No null alleles were found in any of the genes analyzed. A PCR single-strand conformation polymorphism method was implemented for the identification of CSN1S1*F allele simultaneously with A/0(1), B/E, N and the new allele. The allele differed from CSN1S1*B by a synonymous transversion TCG-->TCT in the codon corresponding to Ser(66) of the mature protein. The new allele, named CSN1S1*B', occurred at a high frequency in all the populations, ranging from 0.295 (West African Dwarf Cameroon) to 0.405 (Borno). A greater frequency was found for alleles associated with high alpha(s1)-casein quantity, as has already been observed in the goat populations from the Mediterranean area. The intermediate E allele occurred only in the Red Sokoto and at a low frequency. The faint F allele occurred in 3 populations at frequencies lower than 0.03. Linkage disequilibrium occurred in all the populations, with highly significant differences in Borno, Red Sokoto, and West Africa Dwarf Nigeria, and significant differences in West Africa Dwarf Cameroon. Only 10 haplotypes showed frequencies > or =0.05 in at least 1 of the 4 populations considered, and the overall frequency was >0.1 only for 4 haplotypes: BAAB, B'ACA, ACAB, and BACA (in the order CSN1S1-CSN2-CSN1S2-CSN3). Haplotype BAAB, postulated as an ancestral haplotype in previous studies, was the most common haplotype in all breeds except Borno, where B'ACA was predominant. The results obtained are of considerable significance given that very little information exists on the subject for African goats. The high frequency of strong alleles in the calcium-sensitive caseins as well as the high linkage disequilibrium found among the casein genes in the African breeds analyzed may suggest that specific casein haplotypes have already been selected due to their advantages for nutrition. Haplotypes providing greater protein and casein content would increase the energy content of milk, thus resulting in more favorable growth and survival of young goats and humans consuming the milk.
Cow milk allergy is the most frequent allergy in the first years of life. Milk from other mammalian species has been suggested as a possible nutritional alternative to cow milk, but in several cases, the clinical studies showed a high risk of cross-reactivity with cow milk. In the goat species, αS₁-casein (αS₁-CN), coded by the CSN1S1 gene, is characterized by extensive qualitative and quantitative polymorphisms. Some alleles are associated with null (i.e., CSN1S1 0(1)) or reduced (i.e., CSN1S1 F) expression of the specific protein. The aim of this work was to obtain new information on goat milk and to evaluate its suitability for allergic subjects, depending on the genetic variation at αs₁-CN. Individual milk samples from 25 goats with different CSN1S1 genotypes were analyzed by sodium dodecyl sulfate PAGE and immunoblotting, using monoclonal antibodies specific for bovine α-CN and sera from children allergic to cow milk. A lower reaction was observed to 2 goat milk samples characterized by the CSN1S1 0(1)0(1) and 0(1)F genotypes. Moreover, a fresh food skin prick test, carried out on 6 allergic children, showed the lack of positive reaction to the 0(1)0(1) milk sample and only one weak reactivity to the 0(1)F sample. The risk of cross-reactivity between cow and goat milk proteins suggests the need for caution before using goat milk for infant formulas. However, we hypothesize that it can be used successfully in the preparation of modified formulas for selected groups of allergic patients. The importance of taking the individual goat CN genetic variation into account in further experimental studies is evident from the results of the present work.
Domestic livestock with a limited distribution are increasingly recognized in the action plans of the European Union as a reason for protecting rural land. The preservation and enhancement of the native germplasm and traits selected through the ages in different areas of farming is the first step in increasing typical products at a time when high quality products are increasingly in demand. This is the first time that a zootechnical overview has been performed on the Italian native goat population named "Garfagnina," which is registered on the Tuscan regional repertory of genetic resources at risk of extinction. The aim of the study was to give added value to this population by focusing on particular traits that could be used for promoting typical products. Data on the size of the local goats, zoometric measures, breeding system, milk quality, and genetic polymorphisms were collected to get insight into the current state of the population of this type of goat. The native goat population is reared in Tuscany in central Italy, mostly for its milk. The local goat farms considered in our study are located in the hills and mountains of the northwestern Tuscan Apennine area. For every farm we measured at least 10% of the reproductive females (273), randomly chosen, and all reproductive males (47) for a total of 320 subjects. Regarding the management of the animals and the feeding system, semi-extensive farming is practiced in all the flocks. From a morphological point of view the animals are relatively homogeneous, especially in terms of zoometric data, whereas they show a wider variability regarding coat. Milk gross and fatty acid composition were similar to that reported in the literature for bulk goat milk. Moreover, the average of somatic cell count and standard plate count found in Garfagnina goat milk indicated good hygienic farm management and correct milking practices, although milking is mainly manual. The average number of globules per milliliter found in Garfagnina goat milk was almost double compared with the literature, whereas the average diameter was lower. Milk coagulation properties were scarce, thus indicating poor cheesemaking aptitude of Garfagnina milk. Selecting haplotypes carrying alleles associated with a higher expression of the specific casein could help improve milk cheesemaking aptitude. Moreover, the rather high frequency of the faint CSN1S1*F allele and the occurrence of CSN2*0 might suggest that Garfagnina goat milk could be used, after an appropriate selection, for direct consumption of milk at low casein content for intolerant human subjects.
Casein genes have been proved to have an influence on milk properties, and are in addition appropriate for phylogeny studies. A large number of casein polymorphisms exist in goats, making their analysis quite complex. The four casein loci were analyzed by molecular techniques for genetic polymorphism detection in the two dairy goat breeds Bunte Deutsche Edelziege (BDE; n=96), Weisse Deutsche Edelziege (WDE; n=91), and the meat goat breed Buren (n=75). Of the 35 analyzed alleles, 18 were found in BDE, and 17 in Buren goats and WDE. In addition, a new allele was identified at the CSN1S1 locus in the BDE, showing a frequency of 0.05. This variant, named CSN1S1*A', is characterized by a t-->c transversion in intron 9. Linkage disequilibrium was found at the casein haplotype in all three breeds. A total of 30 haplotypes showed frequencies higher than 0.01. In the Buren breed only one haplotype showed a frequency higher than 0.1. The ancestral haplotype B-A-A-B (in the order: CSN1S1-CSN2-CSN1S2-CSN3) occurred in all three breeds, showing a very high frequency (>0.8) in the Buren.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.