Pleiotropic mutants of Alcaligenes eutrophus with the phenotype Hno-have been characterized previously.They are deficient in several diverse metabolic activities, including hydrogen oxidation, nitrate and urea assimilation, denitrification, and various substrate transport systems. Phenotypically similar mutants were identified among hydrogenase-deficient strains of Pseudomonas facilis. The TnS-labeled hno gene was cloned from a genomic DNA library of A. eutrophus and used to identify the corresponding unimpaired wild-type DNA sequence. The recombinant plasmid pCH148 contained an insert of 12.3 kilobase pairs and was shown to restore the Hno' phenotype to mutants of A. eutrophus and P. facilis. A cosmid isolated from a DNA library of-P. facilis also exhibited intergeneric Hno-complementing activity. The cloned hno loci from both organisms showed DNA homology by Southern blot hybridization. A subclone of pCH148 which contained a 6.5-kilobase-pair insert was constructed. The resulting hybrid, pCH1lO, not only was able to complement Hnomutants but also relieved glutamine auxotrophy in NtrA-mutants of enteric bacteria. This suggests that the hno gene product from A. eutrophus is functionally similar to the NtrA protein, which has been identified as a novel sigma factor (a54)
Mutants of Alcaligenes eutrophus H16 lacking catalytically active soluble hydrogenase (Hos-) grew very slowly lithoautotrophically with hydrogen. Mutants devoid of particulate hydrogenase activity (Hop-) were not affected in growth with hydrogen. The use of Hos-and Hopmutants as donors of hydrogen-oxidizing ability in crosses with plasmid-free recipients impaired in both hydrogenases (Hox-) resulted in transconjugants which had inherited the plasmid and the phenotype of the donor. This indicates that the structural genes which code for the hydrogenases reside on plasmid pHG1. The Hox function of one class of Hoxmutants could not be restored by conjugation. These mutants exhibited a pleiotropic phenotype since they were unable to grow with hydrogen and also failed to grow heterotrophically with nitrate (Hox-Nit-). Nitrate was scarcely utilized as electron acceptor or as nitrogen source. Hox-Nitmutants did not act as recipients but could act as donors of the Hox character. Transconjugants derived from those crosses were Hox+ Nit', indicating that the mutation which leads to the Hox-Nitphenotype maps on the chromosome.Apparently, the product of a chromosomal gene is involved in the expression of plasmid-encoded Hox genes. We observed that the elimination of plasmid pHG1 coincided with the occurrence of multiple resistances to various antibiotics. Since Hox+ transconjugate retained the antibiotic-resistant phenotype, we conclude that this property is not directly plasmid associated.
The nucleotide sequence of the rpoN gene, formerly designated hno, and flanking DNA regions of the aerobic hydrogen bacterium Alcaligenes eutrophus has been determined; rpoN codes for the RNA polymerase sigma factor sigma 54 involved in nitrogen regulation and diverse physiological functions of gram-negative bacteria. In A. eutrophus hydrogen metabolism is under control of rpoN. The Tn5-Mob insertion in a previously isolated pleiotropic mutant was mapped within the rpoN gene. The derived amino acid sequence of the A. eutrophus RpoN protein shows extensive homology to the RpoN proteins of other organisms. Sequencing revealed four other open reading frames: one upstream (ORF280) and three downstream (ORF130, ORF99 and ORF greater than 54) of the rpoN gene. A similar arrangement of homologous ORFs is found in the rpoN regions of other bacteria and is indicative of a conserved gene cluster.
Cuting of the hydrogenase-specifying megaplasmid pHG indigenous to strains of the facultative lithoautotrophic bacterium Alcaligenes eutrophus was correlated with a loss of denitrifying ability (Nitd). The retransfer of plasmid pHGI reconstituted the Nitd phenotype. Plasmid-free mutants were still capable of converting some nitrate to nitrite, but they did not metabolize nitrite under anaerobic conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.