The effect of exogenous dopamine on the development of exercise hyperpnea was studied. Using a bicycle ergometer, five subjects performed repetitive square-wave work-load testing from unloaded pedaling to 80% of each subject's estimated anaerobic threshold. The breath-by-breath ventilation (VE), CO2 production (VCO2), and O2 consumption (VO2) responses were analyzed by curve fitting a first-order exponential model. Comparisons were made between control experiments and experiments with a 3-micrograms X kg-1 X min-1 intravenous infusion of dopamine. Steady-state VE, VCO2 and VO2 were unchanged by the dopamine infusion, both during unloaded pedaling and at the heavier work load. The time constants for the increase in VE (tau VE) and VCO2 (tau CO2) were significantly (P less than 0.05) slowed (tau VE = 56.5 +/- 16.4 s for control, and tau VE = 76.4 +/- 26.6 s for dopamine; tau CO2 = 51.5 +/- 10.6 s for control, and tau CO2 = 64.8 +/- 17.4 s for dopamine) (mean +/- SD), but the time constant for VO2 (tau O2) was not significantly affected (tau O2 = 27.5 +/- 11.7 s for control, and tau O2 = 31.0 +/- 10.1 s for dopamine). We conclude that ablation of carotid body chemosensitivity with dopamine slows the transient ventilatory response to exercise while leaving the steady-state response unaffected.
Subjects voluntarily hyperventilated for 10 breaths. A dynamic end-tidal forcing technique manipulated inspired gases to hold end-tidal CO2-O2 tensions at normal values during the voluntary ventilation period and the postvoluntary ventilation recovery period when the subjects returned to spontaneous breathing. Six of the seven subjects studied exhibited a hyperpnea during the recovery period. Although intersubject and intrasubject variations were evident, the average response for 30 experiments in the six subjects was characterized by an initial drop to 32% of the hyperventilation magnitude followed by an exponential-like decrease with a time constant of 22 s. This recovery period response is consistent with theoretical properties of neural network and physical oscillators where there is a persistence in the amplitude response after the removal of the stimulus. Thus, such oscillator properties may govern the respiratory center behavior in man. Furthermore, since isocapnic voluntary ventilation increases cardiac output, the recovery period response may be a consequence of cardiodynamic hyperpnea.
The technique of artificial brain stem perfusion was used to assess the ventilatory response to step changes in PCO2 of the blood perfusing the brain stem of the cat. A two-channel roller pump and a four-way valve allow switching the gas exchanger into and out of the extracorporeal circuit, which controlled the perfusion to the brain stem. Seven alpha-chloralose-urethan-anesthetized cats were studied, and 25 steps of increasing and 23 steps of decreasing PCO2 were analyzed. A model consisting of a single-exponential function with time delay best described the ventilatory response. The time delays 11.7 +/- 8.1 and 6.4 +/- 6.8 (SD) s (obtained from mean values per cat) for the step into and out of hypercapnia, respectively, were not significantly different (P = 0.10) and were of the order of the transit time of the tubing from valve to brain stem. The steady-state CO2 sensitivities obtained from the on- and off-responses were also not significantly different (P = 0.10). The time constants 87 +/- 25 and 150 +/- 51 s, respectively, were significantly different (P = 0.0002). We conclude that the central chemoreflex is adequately modeled by a single component with a different time constant for on- and off-responses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.