The relationship between arterialized blood lactate concentration [( La-]) and O2 uptake (VO2) was examined during a total of 23 tests by eight subjects. Exercise was on a cycle ergometer with work rate incremented from loadless pedaling to exhaustion as a 50-W/min ramp function. Two different mathematical models were studied. One model employed a log-log transformation of [La-] and VO2 to yield [La-] threshold as proposed by Beaver et al. (J. Appl. Physiol. 59: 1936-1940, 1985). The other model was a continuous exponential plus constant of the form La- = a + b[exp(cVO2)]. In 21 of 23 data sets, the mean square error (MSE) of the continuous model was less than that of the log-log model (P less than 0.001). The MSE was on average 3.5 times greater in the log-log model than in the continuous model. The residuals were randomly distributed about the line of best fit for the continuous model. In contrast, the log-log model showed a nonrandom pattern indicating an inappropriate model. As an index of the position of the [La-]-VO2 continuous model, the VO2 at which the rate of increase of [La-] equaled the rate of increase of VO2 (d[La-]/dVO2 = 1) was determined. This VO2 was 2.241 +/- 0.081 l/min, which averaged 64.6% of maximal VO2. It is proposed that this lactate slope index could be used as a relative indicator of fitness instead of the previously applied threshold concept. The change in [La-] could be better described mathematically by a continuous model rather than the threshold model of Beaver et al.
A computerized prediction-correction scheme has been devised for the control of alveolar gases. First, a model is run off-line to predict the inspiratory gas tensions at each second that should yield the desired alveolar patterns. Second, during the experiment, there is feedback correction based on the deviation of the actual alveolar values from the desired alveolar values. The actual alveolar values are found by a second computer and passed to the controlling computer using interrupts. The controlling computer has four digital-toi-analog outputs for controlling CO2, O2, N2, and air flows so as to achieve the commanded inspiratory PCO2 and PO2 (CO2 and O2 partial pressures, respectively). The scheme is illustrated for the generation of sinusoidal alveolar PCO2 with alveolar PO2 held constant and for steps of alveolar PCO2 at constant alveolar PO2.
A dynamic end-tidal forcing technique for producing step changes in end-tidal CO2 with end-tidal O2 held constant independent of the ventilation response or the mixed venous return is introduced for characterizing the human ventilation response to end-tidal CO2 step changes for both normoxic (PAO2 = 125 Torr) and hypoxic (PAO2 = 60 Torr) conditions. The ventilation response approaches a steady state within 5 min. In normoxia, the on-transient is faster than the off-transient, presumably reflecting the action of cerebral blood flow. The hypoxic step response is faster than the normoxic response presumably reflecting the increased contribution from the carotid body. The delay in the ventilation response after the change in end-tidal CO2 is less in hypoxia than in normoxia and reflects the action of a transport delay and that of a virtual delay. These delays are interpreted with respect to the high-frequency phase shift data for the same subject, generated using sinusoidal end-tidal forcing. The methods of others for experiments utilizing step changes in inspired CO2 are considered with respect to our methods.
A computer-controlled gas-mixing system that manipulates inspired CO2 and O2 on a breath-to-breath basis has been developed. The system uses pairs of solenoid valves, one pair for each gas. These valves can either be fully shut when a low voltage is applied, or fully open when a high voltage is applied. The valves cycle open and shut every 1/12 s. A circuit converts signals from the computer, which dictates the flows of the gases, into a special form for driving the valve pairs. These signals determine the percentage of time within the 1/12-s cycle each valve spends in a open state and the percentage of time it spends shut, which, in effect, set the average flows of the various gases to the mixing chamber. The delay for response of the system to commanded CO2 or O2 changes is less than 200 ms. The system has application for the manipulation of inspired gas fractions so as to achieve desired end-tidal forcing functions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.