Considerable debate surrounds the issue of whether the rate of adaptation of skeletal muscle O2 consumption (QO2) at the onset of exercise is limited by 1) the inertia of intrinsic cellular metabolic signals and enzyme activation or 2) the availability of O2 to the mitochondria, as determined by an extrinsic inertia of convective and diffusive O2 transport mechanisms. This review critically examines evidence for both hypotheses and clarifies important limitations in the experimental and theoretical approaches to this issue. A review of biochemical evidence suggests that a given respiratory rate is a function of the net drive of phosphorylation potential and redox potential and cellular mitochondrial PO2 (PmitoO2). Changes in both phosphorylation and redox potential are determined by intrinsic metabolic inertia. PmitoO2 is determined by the extrinsic inertia of both convective and diffusive O2 transport mechanisms during the adaptation to exercise and the rate of mitochondrial O2 utilization. In a number of exercise conditions, PmitoO2 appears to be within a range capable of modulating muscle metabolism. Within this context, adjustments in the phosphate energy state of the cell would serve as a cytosolic "transducer," linking ATP consumption with mitochondrial ATP production and, therefore, O2 consumption. The availability of reducing equivalents and O2 would modulate the rate of adaptation of QO2.
The kinetics of oxygen uptake (VO2), carbon dioxide output (VCO2), and expired ventilation (VE) in the transition from rest or from prior exercise were studied in response to step increases in power output (PO). The data were modeled with a single-component exponential function incorporating a time delay (TD). Each subject exercised on four occasions. Test 1 was an incremental test for determination of ventilatory anaerobic threshold (AT). Step increase tests were rest to 80% of PO at AT (test 2), rest-40% AT (3a), 40-80% AT (3b), rest-40% AT (4a), and 40-120% AT (4b). Respiratory gas exchange was monitored by open-circuit techniques. The VO2 kinetics showed the time constant (tau) to be longer in the transitions from prior exercise [tests 3b and 4b were 60.6 +/- 10.8 (SD) and 79.2 +/- 17.4 s] than from rest (tests 2, 3a, and 4a were 37.8 +/- 7.2, 30.0 +/- 7.8, and 39.6 +/- 17.4 s). The mean response time (MRT = tau + TD) was also longer for these tests. Kinetic analysis for VCO2 showed a tendency for tau to be shorter for the tests from prior exercise, but neither tau nor tau + TD were significantly different between tests. In contrast to VCO2, VE kinetics showed a significantly longer tau + TD for test 3b (P less than 0.05) and test 4b (P less than 0.01). This study has shown the VO2 kinetics to be delayed when a given increment in PO occurred from prior exercise, whether the final PO was below or above the AT. Further, the dissociation of VCO2 and VE kinetics does not support a direct link between these two variables as the sole control factor in exercise hyperpnea.
The rates of increase in O2 uptake (VO2) after step changes in work rate from 25 W to 60% of pretraining peak VO2 (VO2 peak) were measured at various times during an endurance training program (2 h/day at 60% pretraining VO2 peak). Seven untrained males [23 +/- 1 (SE) yr] performed a series of repeated step changes in work rate before training (PRE) and after 4 days (4D), 9 days (9D), and 30 days (30D) of training. VO2 kinetic responses were determined from breath-by-breath data averaged across four repetitions and analyzed using a two-component exponential model. Mean response time (time taken to reach 63% of steady-state VO2) was faster (P < 0.01) than PRE (38.1 +/- 2.6 s) at both 4D (34.9 +/- 2.4 s) and 9D (32.5 +/- 1.8 s) and was faster (P < 0.01) at 30D than at all other times (28.3 +/- 1.0 s). Blood lactate concentrations (after 6 min of cycling) were also lower at 4D and 9D than PRE (P < 0.01) and were lower at 30D than at all other times (P < 0.01). VO2 peak was unchanged from PRE (3.52 +/- 0.20 l/min) at 8D (3.55 +/- 0.20 l/min) but was increased (P < 0.01) at 30D (3.89 +/- 0.18 l/min). Muscle oxidative capacity (maximal citrate synthase activity) was not significantly increased until 30D (P < 0.01). It is concluded that at least part of the acceleration of whole body VO2 kinetics with endurance training is a rapid phenomenon, occurring before changes in VO2 peak and/or muscle oxidative potential.
The CPAT challenged both the aerobic and anaerobic energy supply systems, and the average V x O2 and HR were similar to reported values during firefighting simulations with incumbent firefighters.
The hypothesis that the rate of increase in muscle O2 uptake (VO2mus) at the onset of exercise is influenced by muscle blood flow was tested during forearm exercise with the arm either above or below heart level to modify perfusion pressure. Ten young men exercised at a power of approximately 2.2 W, and five of these subjects also worked at 1.4 W. Blood flow to the forearm was calculated from the product of blood velocity and cross-sectional area obtained with Doppler techniques. Venous blood was sampled from a deep forearm vein to determine O2 extraction. The rate of increase in VO2mus and blood flow was assessed from the mean response time (MRT), which is the time to achieve approximately 63% increase from baseline to steady state. In the arm below heart position during the 2.2-W exercise, blood flow and VO2mus both increased, with a MRT of approximately 30 s. With the arm above the heart at this power, the MRTs for blood flow [79.8 +/- 15.7 (SE)s] and VO2mus (50.2 +/- 4.0 s) were both significantly slower. Consistent with these findings were the greater increases in venous plasma lactate concentration over resting valued in the above heart position (2.8 +/- 0.4 mmol/l) than in the below heart position (0.9 +/- mmol/l). At the lower power, both blood flow and VO2mus also increased more rapidly with the arm below compared with above the heart. These data support the hypothesis that changes in blood flow at the onset of exercise have a direct effect on oxidative metabolism through alterations in O2 transport.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.