Over the past years, ultrafast lasers with average powers in the 100 W range have become a mature technology, with a multitude of applications in science and technology. Nonlinear temporal compression of these lasers to few-or even single-cycle duration is often essential, yet still hard to achieve, in particular at high repetition rates. Here we report a two-stage system for compressing pulses from a 1030 nm ytterbium fiber laser to single-cycle durations with 5 μJ output pulse energy at 9.6 MHz repetition rate. In the first stage, the laser pulses are compressed from 340 to 25 fs by spectral broadening in a krypton-filled single-ring photonic crystal fiber (SR-PCF), subsequent phase compensation being achieved with chirped mirrors. In the second stage, the pulses are further compressed to singlecycle duration by soliton-effect self-compression in a neon-filled SR-PCF. We estimate a pulse duration of ~3.4 fs at the fiber output by numerically back-propagating the measured pulses. Finally, we directly measured a pulse duration of 3.8 fs (1.25 optical cycles) after compensating (using chirped mirrors) the dispersion introduced by the optical elements after the fiber, more than 50% of the total pulse energy being in the main peak. The system can produce compressed pulses with peak powers >0.6 GW and a total transmission exceeding 70%.
Compact and powerful ultrafast light sources at high pulse repetition rates, based on mode-locked near infrared fiber lasers, are now widely available and are being used in applications such as frequency metrology, molecular spectroscopy, and laser micro-machining. The realization of such lasers in the mid-infrared has, however, remained a challenge for many years. Here we report a record-breaking three-stage fiber laser system that uses an Er-doped fluoride fiber as gain medium, delivering W-level few-cycle pulses at 2.8 µm at a repetition rate of 42.1 MHz. A fiber-based seed oscillator, cavity dispersion-managed by a pulse-stretcher, generates near-100-fs mid-infrared pulses with > 110 n m spectral bandwidth. These pulses are amplified to an average power of ∼ 1 W in a chirp-engineered fiber amplifier, and then compressed to ∼ 16 f s in a short length of highly nonlinear ZBLAN fiber, resulting in a more-than-octave-wide spectrum reaching from 1.8 µm to 3.8 µm with a total power of 430 mW.
Soliton dynamics can be used to temporally compress laser pulses to few fs durations in many different spectral regions. Here we study analytically, numerically and experimentally the scaling of soliton dynamics in noble gas-filled hollow-core fibers. We identify an optimal parameter region, taking account of higher-order dispersion, photoionization, self-focusing, and modulational instability. Although for single-shots the effects of photoionization can be reduced by using lighter noble gases, they become increasingly important as the repetition rate rises. For the same optical nonlinearity, the higher pressure and longer diffusion times of the lighter gases can considerably enhance the long-term effects of ionization, as a result of pulse-by-pulse buildup of refractive index changes. To illustrate the counter-intuitive nature of these predictions, we compressed 250 fs pulses at 1030 nm in an 80-cm-long hollow-core photonic crystal fiber (core radius 15 µm) to ∼5 fs duration in argon and neon, and found that, although neon performed better at a repetition rate of 1 MHz, stable compression in argon was still possible up to 10 MHz.
The evolution of a recombination-driven density depression in a krypton-gas-filled capillary, photoionized at MHz repetition rates, is interferometrically tracked. The msec-long buildup increases in amplitude with pulse energy and repetition rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.