These data indicate that the innovative BC-engineering technique results in the production of stable vascular conduits, which exhibit attractive properties for their use in future TEBV programmes for vascular surgery.
Summary: Nanocelluloses combine in a very exciting manner important properties of cellulose with amazing features of nano‐scale materials. With a view to the increasing discussion on the potential risks of nanoparticles and nanotechnology to human health and the environment, it is important to point out that the nanocellulose fibers are irreversibly networked in the supramolecular cellulose structure. This contribution assembles the current knowledge in research, development, and application in the field of nanocelluloses through examples. The topics combine selected results on nanocelluloses from bacteria and wood as well as the formation and in situ shaping of cellulose bodies, the coating of materials with nanosized cellulose networks/supports, and the preparation of nanocellulose composites as well as the use of bacterial cellulose as novel type of medical implants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.