We have studied the adsorption and reaction of oxygen and CO on a stepped Pt surface with varying amounts of Au, using temperature-programmed desorption and reaction (TPD and TPR), low-energy electron diffraction (LEED), high-resolution electron energy loss spectroscopy, and steady-state reaction measurements. When the surface is fully covered with Au it is inert to oxygen adsorption and to CO oxidation, and supports only a single weakly bound CO adsorption state. The surface covered with 0.7 ML Au, however, exhibits properties different from either bare Pt or bare Au. Our TPD and LEED results suggest the coexistence of completely Au-covered regions and regions with Au on the step edges but not on the terraces. Dissociative oxygen adsorption is reduced by 90%, and the remaining oxygen is confined to Pt sites near the Au/Pt boundaries. The Au-covered regions support weakly bound CO adsorption states with desorption temperatures of 120, 190, and 240 K. CO in these states can diffuse rapidly and react efficiently with adsorbed atomic oxygen at temperatures as low as 150 K. In low-temperature TPR experiments the reaction is limited by the availability of adsorbed oxygen under almost all conditions. Under steady-state conditions, however, it is limited by the availability of CO even at low temperatures and CO partial pressures up to 10-6 Torr. Adding CO partial pressure does not inhibit the reaction. Consequently, adsorbed CO does not completely block all the sites at which oxygen dissociates on this surface, unlike on bare platinum.
A partial monolayer of Au strongly modifies the kinetics of water adsorption and formation on the stepped Pt(335) surface. The effects are more than passivation. With a Au coverage of 0.7 ML as measured by Auger spectroscopy, saturation H and O adsorption are only 15% and 8.5%, respectively, of their values on bare Pt. Adsorption at step sites is nearly eliminated. Water formation is reduced to 5% of its bare Pt value: one-sixth of what would be expected if each Au atom blocked one site. Water formation on Pt has multiple reaction pathways. The partial Au layer eliminates only the low-temperature pathway. The H recombination temperature is reduced relative to bare Pt, so H recombination competes with water formation and reduces its efficiency. The partial Au layer also changes the desorption spectrum of water. At low water coverage, there is a single desorption peak, intermediate in temperature between those seen on Pt and Au.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.