Preterm birth (PTB) is a leading cause of neonatal morbidity and mortality; however, its non-infection-related mechanisms are poorly understood. Herein, we show that the expansion of activated CD1d-restricted invariant NKT (iNKT) cells in the third trimester by administration of α-galactosylceramide (α-GalCer) induces late PTB and neonatal mortality. In vivo imaging revealed that fetuses from mice that underwent α-GalCer-induced late PTB had bradycardia and died shortly after delivery. Yet, administration of α-GalCer in the second trimester did not cause pregnancy loss. PPARγ activation, through rosiglitazone treatment, reduced the rate of α-GalCer-induced late PTB and improved neonatal survival. Administration of α-GalCer in the third trimester suppressed PPARγ activation as shown by the down-regulation of Fabp4 and Fatp4 in myometrial and decidual tissues, respectively; this suppression was rescued by rosiglitazone treatment. Administration of α-GalCer in the third trimester induced an increase in the activation of conventional CD4+ T cells in myometrial tissues and the infiltration of activated macrophages, neutrophils and mature DCs to myometrial and/or decidual tissues. All of these effects were blunted after rosiglitazone treatment. Administration of α-GalCer also up-regulated the expression of inflammatory genes at the maternal-fetal interface and systemically, and rosiglitazone treatment partially attenuated these responses. Finally, an increased infiltration of activated iNKT-like cells in human decidual tissues is associated with non-infection-related preterm labor/birth. Collectively, these results demonstrate that iNKT-cell activation in vivo leads to late PTB by initiating innate and adaptive immune responses and suggest that the PPARγ pathway has potential as a target for prevention of this syndrome.
Peripheral blood mononuclear cells from many asymptomatic HIV‐infected patients exhibit defects in cytokine production and impaired proliferative responses in vitro but the mechanisms underlying this subclinical immune deficiency are controversial. To determine whether abnormalities in the earliest events following receptor engagement may help to explain the in vitro immune dysfunction, we measured the inducibility of the early activation marker CD69 in T cells from asymptomatic HIV‐infected individuals in response to stimulation with anti‐CD2 or anti‐CD3 mAb. In a whole blood assay, we found that induction of CD69 was markedly impaired in CD4+ T cells from later‐stage HIV‐infected patients (CD4 counts 200–400/mm3) compared to uninfected controls. Among early stage patients (CD4 > 400/mm3), a subset (29%) had impaired CD69 induction. CD69 responses were equally depressed after stimulation through the CD3 or CD2 receptor pathways. Survey of a panel of immunophenotypic markers and propensity for apoptosis demonstrated a significant association between depressed induction of CD69 and decreased percentages of CD4+CD26+ and CD4+CD95+ cells but no association with the level of apoptosis. These data indicate that defects in T lymphocyte activation through CD3 and CD2 can be measured within hours of receptor stimulation in asymptomatic HIV‐infected individuals and might be useful to monitor as an indicator of immune function in these patients. Cytometry 30:1–9, 1997. © 1997 Wiley‐Liss, Inc.
Preterm birth, the leading cause of neonatal morbidity and mortality worldwide, is frequently preceded by spontaneous preterm labour, a syndrome of multiple aetiologies. Pathological inflammation is causally linked to spontaneous preterm labour. Indeed, direct activation of invariant natural killer T (iNKT) cells via α-galactosylceramide induces preterm labour/birth largely by initiating systemic and local (i.e. decidua and myometrium) innate immune responses. Herein, we investigated whether iNKT-cell activation altered local and systemic T-cell subsets. Administration of α-galactosylceramide induced an expansion of activated CD1d-restricted iNKT cells in the decidua and a reduction in the number of: (1) total T cells (conventional CD4 and CD8 T cells) through the down-regulation of the CD3ɛ molecule in the peripheral circulation, spleen, uterine-draining lymph nodes (ULNs), decidua and/or myometrium; (2) CD4 regulatory T cells in the spleen, ULNs and decidua; (3) T helper type 17 (Th17) cells in the ULNs but an increase in the number of decidual Th17 cells; (4) CD8 regulatory T cells in the spleen and ULNs; and (5) CD4 and CD8 forkhead box protein 3 negative (Foxp3 ) responder T cells in the spleen and ULNs. As treatment with rosiglitazone prevents iNKT-cell activation-induced preterm labour/birth, we also explored whether the administration of this peroxisome proliferator-activated receptor gamma (PPARγ) agonist would restore the number of T cells. Treating α-galactosylceramide-injected mice with rosiglitazone partially restored the number of T cells in the spleen but not in the decidua. In summary, iNKT-cell activation altered the systemic and local T-cell subsets prior to preterm labour/birth; however, treatment with rosiglitazone partially reversed such effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.