In this chapter, we establish a framework for formal comparisons of several leading optimization algorithms, providing guidance to practitioners for when to use or not use a particular method. The focus in this chapter is five general algorithm forms: random search, simultaneous perturbation stochastic approximation, simulated annealing, evolution strategies, and genetic algorithms. We summarize the available theoretical results on rates of convergence for the five algorithm forms and then use the theoretical results to draw some preliminary conclusions on the relative efficiency. Our aim is to sort out some of the competing claims of efficiency and to suggest a structure for comparison that is more general and transferable than the usual problem-specific numerical studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.