Abstract-The spherical tokamak (ST) is a leading candidate for a fusion nuclear science facility (FNSF) due to its compact size and modular configuration. The National Spherical Torus eXperiment (NSTX) is a MA-class ST facility in the U.S. actively developing the physics basis for an ST-based FNSF. In plasma transport research, ST experiments exhibit a strong (nearly inverse) scaling of normalized confinement with collisionality, and if this trend holds at low collisionality, high fusion neutron fluences could be achievable in very compact ST devices. A major motivation for the NSTX Upgrade (NSTX-U) is to span the next factor of 3-6 reduction in collisionality. To achieve this collisionality reduction with equilibrated profiles, NSTX-U will double the toroidal field, plasma current, and NBI heating power and increase the pulse length from 1-1.5s to 5s. In the area of stability and advanced scenarios, plasmas with higher aspect ratio and elongation, high βN , and broad current profiles approaching those of an ST-based FNSF have been produced in NSTX using active control of the plasma β and advanced resistive wall mode control. High non-inductive current fractions of 70% have been sustained for many current diffusion times, and the more tangential injection of the 2nd NBI of the Upgrade is projected to increase the NBI current drive by up to a factor of 2 and support 100% non-inductive operation. More tangential NBI injection is also projected to provide non-solenoidal current ramp-up (from IP = 0.4MA up to 0.8-1MA) as needed for an ST-based FNSF. In boundary physics, NSTX and higher-A tokamaks measure an inverse relationship between the scrape-off layer heat-flux width and plasma current that could unfavorably impact nextstep devices. Recently, NSTX has successfully demonstrated very high flux expansion and substantial heat-flux reduction using a snowflake divertor configuration, and this type of divertor is incorporated in the NSTX-U design. The physics and engineering design supporting NSTX Upgrade are described.
NSTX operates at low aspect ratio (R/a∼1.3) and high beta (up to 40%), allowing tests of global confinement and local transport properties that have been established from higher aspect ratio devices. NSTX plasmas are heated by up to 7 MW of deuterium neutral beams with preferential electron heating as expected for ITER. Confinement scaling studies indicate a strong B T dependence, with a current dependence that is weaker than that observed at higher aspect ratio. Dimensionless scaling experiments indicate a strong increase of confinement with decreasing collisionality and a weak degradation with beta. The increase of confinement with B T is due to reduced transport in the electron channel, while the improvement with plasma current is due to reduced transport in the ion channel related to the decrease in the neoclassical transport level. Improved electron confinement has been observed in plasmas with strong reversed magnetic shear, showing the existence of an electron internal transport barrier (eITB). The development of the eITB may be associated with a reduction in the growth of microtearing modes in the plasma core. Perturbative studies show that while L-mode plasmas with reversed magnetic shear and an eITB exhibit slow changes of L T e across the profile after the pellet injection, H-mode plasmas with a monotonic q-profile and no eITB show no change in this parameter after pellet injection, indicating the existence of a critical gradient that may be related to the q-profile. Both linear and non-linear simulations indicate the potential importance of ETG modes at the lowest B T . Localized measurements of high-k fluctuations exhibit a sharp decrease in signal amplitude levels across the L-H transition, associated with a decrease in both ion and electron transport, and a decrease in calculated linear microinstability growth rates across a wide k-range, from the ITG/TEM regime up to the ETG regime.
The National Spherical Torus Experiment (NSTX) has demonstrated the advantages of low aspect ratio geometry in accessing high toroidal and normalized plasma beta, and βN ≡ 108⟨βt⟩ aB0/Ip. Experiments have reached βt = 39% and βN = 7.2 through boundary and profile optimization. High βN plasmas can exceed the ideal no-wall stability limit, βNno−wall, for periods much greater than the wall eddy current decay time. Resistive wall mode (RWM) physics is studied to understand mode stabilization in these plasmas. The toroidal mode spectrum of unstable RWMs has been measured with mode number n up to 3. The critical rotation frequency of Bondeson–Chu, Ωcrit = ωA/(4q2), describes well the RWM stability of NSTX plasmas when applied over the entire rotation profile and in conjunction with the ideal stability criterion. Rotation damping and global rotation collapse observed in plasmas exceeding βNno−wall differs from the damping observed during tearing mode activity and can be described qualitatively by drag due to neoclassical toroidal viscosity in the helically perturbed field of an ideal displacement. Resonant field amplification of an applied n = 1 field perturbation has been measured and increases with increasing βN. Equilibria are reconstructed including measured ion and electron pressure, toroidal rotation and flux isotherm constraint in plasmas with core rotation ωϕ/ωA up to 0.48. Peak pressure shifts of 18% of the minor radius from the magnetic axis have been reconstructed.
Research in the National Spherical Torus Experiment, NSTX, has been conducted to establish spherical torus plasmas to be used for high-, auxiliary heated experiments. The device has a major radius R 0 = 0.86 m, a midplane half-width of 0.7 m, and has been operated with toroidal magnetic field B 0 ≤ 0.3 T and I p ≤ 1.0 MA. The evolution of the plasma equilibrium is analyzed between shots with an automated version of the EFIT code. Limiter, double-null, and lower single-null diverted configurations have been sustained for several energy confinement times. Plasma stored energy has reached 92 kJ (t = 17.8 %) with neutral beam heating. Plasma elongation of 1.6 ≤ ≤ 2.0 and triangularity in the range 0.25 ≤ ≤ 0.45 have been sustained, with values of = 2.5 and = 0.6 being reached transiently. The reconstructed magnetic signals are fit to the corresponding measured values with low error. Aspects of the plasma boundary, pressure, and safety factor profiles are supported by measurements from non-magnetic diagnostics. Plasma densities have reached 0.8 and 1.2 times the Greenwald limit in deuterium and helium plasmas, respectively, with no clear limit encountered. Instabilities including sawteeth and reconnection events (REs), characterized by Mirnov oscillations, and perturbation of the I p , , and i evolution, have been observed. A low q limit was observed and is imposed by a low toroidal mode number kink instability.
The European Strategy Forum on Research Infrastructures (ESFRI) has selected in 2006 a proposal based on ultra-intense laser fields with intensities reaching up to 10-10 W cm called 'ELI' for Extreme Light Infrastructure. The construction of a large-scale laser-centred, distributed pan-European research infrastructure, involving beyond the state-of-the-art ultra-short and ultra-intense laser technologies, received the approval for funding in 2011-2012. The three pillars of the ELI facility are being built in Czech Republic, Hungary and Romania. The Romanian pillar is ELI-Nuclear Physics (ELI-NP). The new facility is intended to serve a broad national, European and International science community. Its mission covers scientific research at the frontier of knowledge involving two domains. The first one is laser-driven experiments related to nuclear physics, strong-field quantum electrodynamics and associated vacuum effects. The second is based on a Compton backscattering high-brilliance and intense low-energy gamma beam (<20 MeV), a marriage of laser and accelerator technology which will allow us to investigate nuclear structure and reactions as well as nuclear astrophysics with unprecedented resolution and accuracy. In addition to fundamental themes, a large number of applications with significant societal impact are being developed. The ELI-NP research centre will be located in Măgurele near Bucharest, Romania. The project is implemented by 'Horia Hulubei' National Institute for Physics and Nuclear Engineering (IFIN-HH). The project started in January 2013 and the new facility will be fully operational by the end of 2019. After a short introduction to multi-PW lasers and multi-MeV brilliant gamma beam scientific and technical description of the future ELI-NP facility as well as the present status of its implementation of ELI-NP, will be presented. The science and examples of societal applications at reach with these electromagnetic probes with much improved performances provided at this new facility will be discussed with a special focus on day-one experiments and associated novel instrumentation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.