A major knowledge gap exists on how eruptive compositions of a single martian volcanic province change over time. Here we seek to fill that gap by assessing the compositional evolution of Elysium, a major martian volcanic province. A unique geochemical signature overlaps with the southeastern flows of this volcano, which provides the context for this study of variability of martian magmatism. The southeastern lava fields of Elysium Planitia show distinct chemistry in the shallow subsurface (down to several decimeters) relative to the rest of the martian mid-to-low latitudes (average crust) and flows in northwest Elysium. By impact crater counting chronology we estimated the age of the southeastern province to be 0.85 ± 0.08 Ga younger than the northwestern fields. This study of the geochemical and temporal differences between the NW and SE Elysium lava fields is the first to demonstrate compositional variation within a single volcanic province on Mars. We interpret the geochemical and temporal differences between the SE and NW lava fields to be consistent with primary magmatic processes, such as mantle heterogeneity or change in depth of melt formation within the martian mantle due to crustal loading.
The Greater Thaumasia region consists of three chemical provinces that include Syria, Solis, and Thaumasia Planae, the Corprates Rise, part of the Thaumasia Highlands, and the transition zone northwest of the Argyre basin. Chemical signatures obtained from the Mars Odyssey Gamma Ray Spectrometer suggest low abundances of K and Th to the west, with low H abundances and high Si abundances to the east, relative to the bulk Martian crust at midlatitudes. These observations are confirmed and quantified with a modified box and whisker analysis that simultaneously captures the degree of deviation and significance of the regionally anomalous chemistry. Motivated by regionally unique chemistry, as well as its diverse geological history, we characterize Greater Thaumasia in terms of chemistry, mineralogy, and mapped geology to determine how such complementary data record the evolution of this region. Our observations are inconsistent with a proposed salt‐lubricated landslide origin, particularly given the lack of chemical or mineralogical signatures to support near‐surface salt deposits that should arise over geological timescales. Our observations instead support magmatic processes, such as mantle evolution over geological time, which may impart the Si‐enriched signature of the eastern portion of Greater Thaumasia as well as the K and Th depletion of the southeastern flank of Syria Planum. While the observed trend of decreasing K and Th from Noachian to Hesperian lavas is inconsistent with previous models of Martian mantle evolution, we see an increase in Ca content at the Noachian‐Hesperian boundary, consistent with predictions from thermodynamic modeling.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.