Composites durability, i.e., the ability to retain functionality in the presence of damage, is a crucial safety and economic issue. Generally the first damage mode in composite laminates is matrix cracking, which affects the mechanical properties of the structure long before its loadbearing capacity is exhausted. In this paper, a detailed analysis of the effect of matrix cracking
The design and construction is described of a vehicle bridge made of glass-reinforced polyester pultruded box beams. The bridge has a simply supported span 11 . 6 m long and 4 m wide. It has been designed as a Class 30 (300 kN load capacity) according to DIN 1072 and represents a single traffic lane. The composite bridge consists of a 3-D truss structure made of thick-wall fibrereinforced plastic longitudinal box elements of hollow square cross-section. The bridge design proposed allows for fast construction as it consists of pre-fabricated, ready to assemble elements. The total of the composite bridge does not exceed 135 kN.
Damage tolerance' is used to describe the attribute of a structure associated with the retention of the required residual strength throughout its service life, while irreversible damage mechanisms are active within the structure itself. 'Design for damage tolerance' is based on the identification and quantification of the various damage mechanisms that result in the alteration (mainly deterioration) of the material properties. These may alter the material response to thermomechanical loads. In the present paper, transparent glass fibre reinforced epoxy laminates were used to study the damage evolution sequence under tensile loading. Acoustic emission was employed as a non-destructive technique for the in situ monitoring of the active damage mechanisms until the final failure of the material. Pattern recognition algorithms were utilised to classify the acquired acoustic emission signals and associate them to active damage mechanisms. Experimental findings were compared to theoretical model predictions.
a b s t r a c tThree analytical models with increasing complexity, all based on minimization of complementary energy, are compared in their ability to predict shear modulus reduction of laminates with intralaminar cracks in 90-layer. The very elegant and simple (and the less accurate) model by Hashin assumes linear out-of-plane shear stress distribution across the ply in all layers. The second model assumes exponential shape of these stresses in the constraint layer keeping linear assumption in the cracked layer. The model developed in the present paper accounts for nonlinear out-of-plane shear stress thickness distribution in all layers described by shape functions determined in the procedure of minimization. Increasing the complexity of the model the predicted shear modulus of the damaged laminate increases approaching to value obtained using finite elements (FE). Results show that for laminates with relatively thick cracked layers the stress state description in the cracked layer should be refined whereas for laminates with constraint layer thicker than the cracked layer more accurate stress description in the constraint layer is necessary. More accurate solutions could be derived using the described methodology, but the involved complexity and the numerical routines required for their application diminish their value comparing with direct FE solution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.