Human peroxisome proliferator-activated receptors (hPPARs) are ligand-dependent transcription factors that control various biological responses, and there are three subtypes: hPPARα, hPPARδ, and hPPARγ. We report here that α-substituted phenylpropanoic acid-type hPPAR agonists with similar structure bind to the hPPAR ligand binding domain (LBD) in different conformations, depending on the receptor subtype. These results might indicate that hPPAR ligand binding pockets have multiple binding points that can be utilized to accommodate structurally flexible hPPAR ligands.
Hepatocyte growth factor (HGF) is involved in malignant behavior of cancer cells by enhancing invasion and metastasis. We earlier found that NK4, a four-kringle fragment of HGF, functions as both an HGF antagonist and an angiogenesis inhibitor. We have now carried out studies to determine if hydrodynamics-based delivery and expression of the NK4 gene would inhibit liver metastasis and invasive growth of colon carcinoma cells in mice. When the naked plasmid for NK4 was introduced into mice by hydrodynamics-based gene delivery, a high level of expression of NK4 was predominant in the liver. After intrasplenic inoculation of MC-38 murine colon carcinoma cells, the cells formed numerous metastatic nodules in the liver and showed invasive growth behavior. On the other hand, when mice were given the NK4 plasmid, hepatic gene expression of NK4 inhibited the liver metastasis and subsequent growth associated with a decrease in microvessel density. Likewise, intrahepatic invasion of cancer cells was inhibited by NK4 gene expression, and this anti-invasive effect was associated with in situ inhibition of c-Met receptor tyrosine phosphorylation. Moreover, NK4 gene expression prolonged survival of these mice. Taken together with the knowledge that the majority of deaths from colon cancer are due to liver metastasis, the potential therapeutic use of hepatic gene expression of NK4 for metastatic colon cancer treatment can be given consideration.
We examined effects of recombinant hepatocyte growth factor (HGF) on cutaneous wound healing, using a full-thickness cutaneous excision model in diabetic mice. Topical administration of HGF, as well as basic fibroblast growth factor (bFGF), promoted the rate of wound closure and re-epithelialization. Both HGF and bFGF enhanced expansion of the granulation tissue and stimulated neovascularization on day 7 postwounding, wherein the increase in microvessel density in HGF-treated wounds was higher than that in bFGF-treated wounds. Matrix metalloproteinases (MMP-2 and MMP-9) activities involved in cell migration, angiogenesis, and extracellular matrix (ECM) remodeling, were enhanced by HGF-treatment on day 7. On day 28 postwounding (later stages of wound healing), granulation tissue in bFGF-treated wounds remained to a greater extent than that seen in saline- and HGF-treated wounds. Likewise, bFGF- but not HGF-treatment stimulated DNA synthesis of fibroblasts in granulation tissue, suggesting that HGF stimulates wound healing with lesser degree of susceptibility to cutaneous scarring. We propose that supplement of HGF may be a potential therapeutic approach for treatment of cutaneous ulcer.
Objective
A dual inhibitor of focal adhesion kinase (FAK) and insulin-like growth factor 1 receptor (IGF-1R), TAE226, was evaluated in a panel of cancer cell lines, MIA PaCa-2 human pancreatic tumor and 4T1 murine breast tumor models. The profiling data were generated during the drug discovery research prior to the first publication of TAE226 appeared in 2007 (Liu et al. in Mol Cancer Ther 6:1357–1367,
2007
; Shi et al. in Mol Carcinog 46(6):488–496,
2007
; Halder et al. in Cancer Res 67(22):10976–10983,
2007
).
Results
In a panel of 37 cancer cell lines, TAE226 showed a mean GI
50
value of 0.76 μmol/L. In the MIA PaCa-2 model, TAE226 inhibited phosphorylation of Y397-FAK and phosphorylation of S473-Akt as IGF-1R signaling in the cell culture in vitro and the tumor in mice. Oral administration of TAE226 induced tumor stasis at 30 mg/kg and tumor regression at 100 mg/kg in the subcutaneous tumor, and inhibited the orthotopic tumor growth in a dose-dependent manner. Similarly in the 4T1 model, TAE226 inhibited phosphorylation of Y397-FAK and S473-Akt in the cell culture in vitro and the tumor in mice. Oral administration of TAE226 inhibited the orthotopic tumor growth and metastasis to the lung in a dose-dependent manner. Thus, TAE226 represents a novel class of selective and small molecule kinase inhibitor with a potent in vivo activity.
Electronic supplementary material
The online version of this article (10.1186/s13104-019-4389-7) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.