В работе получена асимптотическая формула для количества представлений натурального числа N в виде q1 + q2 + [αq3], где q1, q2, q3 --бесквадратные числа, α > 1 --фиксированное иррациональное алгебраическое число.Ключевые слова: тернарные задачи, бесквадратные числа, асимптотическая формула.
Homogeneous Beatty sequences are sequences of the form 𝑎 𝑛 = [𝛼𝑛], where 𝛼 is a positive irrational number. In 1957 T. Skolem showed that if the numbers 1, 1 𝛼 , 1 𝛽 are linearly independent over the field of rational numbers, then the sequences [𝛼𝑛] and [𝛽𝑛] have infinitely many elements in common. T. Bang strengthened this result: denote 𝑆 𝛼,𝛽 (𝑁 ) the number of natural numbers 𝑘, 1 𝑘 𝑁 , that belong to both Beatty sequences [𝛼𝑛], [𝛽𝑚], and the numbers 1, 1 𝛼 , 1 𝛽 are linearly independent over the field of rational numbers, then 𝑆 𝛼,𝛽 (𝑁 ) ∼ 𝑁 𝛼𝛽 for 𝑁 → ∞.In this paper, we prove a refinement of this result for the case of algebraic numbers. Let 𝛼, 𝛽 > 1 be irrational algebraic numbers such that 1, 1 𝛼 , 1 𝛽 are linearly independent over the field of rational numbers. Then for any 𝜀 > 0 the following asymptotic formula holds:𝑆 𝛼,𝛽 (𝑁 ) = 𝑁 𝛼𝛽 + 𝑂 (︀ 𝑁 1 2 +𝜀 )︀ , 𝑁 → ∞.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.