Owing to additive manufacturing techniques, a structure at millimeter length scale (macroscale) can be produced by using a lattice substructure at micrometer length scale (microscale). Such a system is called a metamaterial at the macroscale as the mechanical characteristics deviate from the characteristics at the microscale. As a remedy, metamaterial is modeled by using additional parameters; we intend to determine them. A homogenization approach based on the asymptotic analysis establishes a connection between these different characteristics at micro-and macroscales. A linear elastic first order theory at the microscale is related to a linear elastic second order theory at the macroscale. Relation for parameters at the macroscale is derived by using the equivalence of energy at macro-and microscales within a so-called Representative Volume Element (RVE). Determination of parameters are succeeded by solving a boundary value problem with the Finite Element Method (FEM). The proposed approach guarantees that the additional parameters vanish if the material is purely homogeneous, in other words, it is fully compatible with conventional homogenization schemes based on spatial averaging techniques. Moreover, the proposed approach is reliable as it ensures that such resolved additional parameters are not sensitive to choices of RVE consisting in the repetition of smaller RVEs but depend upon the intrinsic size of the structure.
Mechanical behavior of materials with granular microstructures is confounded by unique features of their grain-scale mechano-morphology, such as the tension–compression asymmetry of grain interactions and irregular grain structure. Continuum models, necessary for the macro-scale description of these materials, must link to the grain-scale behavior to describe the consequences of this mechano-morphology. Here, we consider the damage behavior of these materials based upon purely mechanical concepts utilizing energy and variational approach. Granular micromechanics is accounted for through Piola’s ansatz and objective kinematic descriptors obtained for grain-pair relative displacement in granular materials undergoing finite deformations. Karush–Kuhn–Tucker (KKT)-type conditions that provide the evolution equations for grain-pair damage and Euler–Lagrange equations for evolution of grain-pair relative displacement are derived based upon a non-standard (hemivariational) variational approach. The model applicability is illustrated for particular form of grain-pair elastic energy and dissipation functionals through numerical examples. Results show interesting damage-induced anisotropy evolution including the emergence of a type of chiral behavior and formation of finite localization zones.
In this paper, a strain gradient continuum model for a metamaterial with a periodic lattice substructure is considered. A second gradient constitutive law is postulated at the macroscopic level. The effective classical and strain gradient stiffness tensors are obtained based on asymptotic homogenization techniques using the equivalence of energy at the macro-and microscales within a so-called representative volume element. Numerical studies by means of finite element analysis were performed to investigate the effects of changing volume ratio and characteristic length for a single unit cell of the metamaterial as well as changing properties of the underlying material. It is also shown that the size effects occurring in a cantilever beam made of a periodic metamaterial can be captured with appropriate accuracy by using the identified effective stiffness tensors. Keywords Effective continuum • Strain gradient elasticity • Asymptotic homogenization method • Finite element method Communicated by Luca Placidi.
<abstract><p>We report a continuum theory for 2D strain gradient materials accounting for a class of dissipation phenomena. The continuum description is constructed by means of a (reversible) placement function and by (irreversible) damage and plastic functions. Besides, expressions of elastic and dissipation energies have been assumed as well as the postulation of a hemi-variational principle. No flow rules have been assumed and plastic deformation is also compatible, that means it can be derived by a placement function. Strain gradient Partial Differential Equations (PDEs), boundary conditions (BCs) and Karush-Kuhn-Tucker (KKT) type conditions are derived by a hemi variational principle. PDEs and BCs govern the evolution of the placement descriptor and KKT conditions that of damage and plastic variables. Numerical experiments for the investigated homogeneous cases do not need the use of Finite Element simulations and have been performed to show the applicability of the model. In particular, the induced anisotropy of the response has been investigated and the coupling between damage and plasticity evolution has been shown.</p></abstract>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.