Metal-nucleic acid cages are a promising new class of materials. Like metallo-supramolecular cages, these systems can use their metals for redox, photochemical, magnetic and catalytic control over encapsulated cargo. However, using DNA provides the potential to program pore size, geometry, chemistry and addressability, and the ability to symmetrically and asymmetrically position transition metals within the three-dimensional framework. Here we report the quantitative construction of metal-DNA cages, with the site-specific incorporation of a range of metals within a three-dimensional DNA architecture. Oligonucleotide strands containing specific environments suitable for transition-metal coordination were first organized into two DNA triangles. These triangles were then assembled into a DNA prism with linking strands. Metal centres were subsequently incorporated into the prisms at the pre-programmed locations. This unprecedented ability to position transition metals within a three-dimensional framework could lead to metal-DNA hosts with applications for the encapsulation, sensing, modification and release of biomolecules and nanomaterials.
Voltammetric microelectrodes and microdialysis probes were used simultaneously to monitor extracellular dopamine in rat striatum during electrical stimulation of the medial forebrain bundle. Microelectrodes were placed far away (1 mm) from, immediately adjacent to, and at the outlet of microdialysis probes. In drug-naive
Owing to additive manufacturing techniques, a structure at millimeter length scale (macroscale) can be produced by using a lattice substructure at micrometer length scale (microscale). Such a system is called a metamaterial at the macroscale as the mechanical characteristics deviate from the characteristics at the microscale. As a remedy, metamaterial is modeled by using additional parameters; we intend to determine them. A homogenization approach based on the asymptotic analysis establishes a connection between these different characteristics at micro-and macroscales. A linear elastic first order theory at the microscale is related to a linear elastic second order theory at the macroscale. Relation for parameters at the macroscale is derived by using the equivalence of energy at macro-and microscales within a so-called Representative Volume Element (RVE). Determination of parameters are succeeded by solving a boundary value problem with the Finite Element Method (FEM). The proposed approach guarantees that the additional parameters vanish if the material is purely homogeneous, in other words, it is fully compatible with conventional homogenization schemes based on spatial averaging techniques. Moreover, the proposed approach is reliable as it ensures that such resolved additional parameters are not sensitive to choices of RVE consisting in the repetition of smaller RVEs but depend upon the intrinsic size of the structure.
A random-walk simulation of microdialysis is used to examine how a reaction that consumes analyte in the medium external to the probe affects the extraction and recovery processes. The simulations suggest that such a reaction can promote the extraction process while simultaneously inhibiting the recovery process, which appears to be consistent with recent experimental evidence of asymmetry in the extraction and recovery of the neurotransmitter, dopamine, during brain microdialysis. This suggests that quantitative microdialysis strategies that rely on the extraction fraction as a measure of the probe recovery value, such as the no-net-flux method, will produce an underestimate of the analyte concentration in the external medium when that analyte is consumed by a reaction in the external medium. Furthermore, if experimental conditions arise under which the kinetics of the reaction are changed, then changes in the extraction and recovery processes are likely to occur as well. The implications of these theoretical findings for the quantitative interpretation of in vivo microdialysis results obtained for the neurotransmitter dopamine are examined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.