We report full quantum scattering calculations for low-energy near-threshold inelastic cross sections in Mg + H and Mg + + H − collisions. The calculations include all transitions between the eight lowest adiabatic MgH( 2 + ) molecular states, with the uppermost of those diabatically extended to the ionic molecular state in the asymptotic region. This allows us to treat the excitation processes between the seven lowest atomic states of magnesium in collisions with hydrogen atoms, as well as the ion-pair production and the mutual neutralization processes. The collision energy range is from threshold up to 10 eV. These results are important for astrophysical modeling of spectra in stellar atmospheres. The processes in question are carefully examined and several process mechanisms are found. Some mechanisms are determined by interactions between ionic and covalent configurations at relatively large internuclear distances, while others are based on short-range nonadiabatic regions due to interactions between covalent configurations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.