3 Санкт-Петербургское ГКУЗ «Диагностический центр (медико-генетический)» Актуальность. Врожденный передний вывих голени (ВПВГ) -это редкое заболевание опорно-двигательной системы с частотой встречаемости 1 на 100 000 живых новорожденных. Своевременная пренатальная диагно-стика и лечение, начатое в первые дни жизни, позволяют избежать инвалидизации ребенка. Цель исследования: изучить возможности пренатальной ультразвуковой диагностики и оценить эффектив-ность ранней ортопедической коррекции с применением консервативных методов лечения. Материалы и методы. За период с января 1988 по февраль 2016 г. были пролечены 37 новорожденных (50 нижних конечностей) с ВПВГ. Первичная оценка пораженных конечностей осуществлялась сразу после рождения. Для определения тяжести вывиха использовались классификации Seringe и Tarek. Всем пациентам проводилось консервативное лечение. Возраст детей в момент начала лечения составил от 2 часов до 5 дней. Были использованы различные методики: этапные гипсовые повязки (10 нижних конечностей), коррекция на шине Розена (8 нижних конечностей); с 2003 г.применялся единый протокол лечения, разработанный авторами исследования. Результаты. Пренатальный УЗ-скрининг позволил выявить ВПВГ до рождения ребенка в 21 % случаев. Отда-ленные результаты (катамнез от 3 до 28 лет) оценивались по шкале Seringe и были отличными в 60 % случаев, хорошими -в 32 % и удовлетворительными -в 8 % случаев. Плохих результатов не было. Все дети, вклю-ченные в исследование, начали самостоятельно ходить в возрасте 9-18 месяцев. Заключение. Пренатальная УЗИ-диагностика позволяет выявить ВПВГ. Лечение новорожденных, начатое в первые часы жизни по протоколу, разработанному авторами, позволяет в короткие сроки, без длительных этапных гипсовых повязок вправить вывих голени. Отдаленные результаты демонстрируют эффективность предложенной методики.Ключевые слова: врожденный передний вывих голени, пренатальная диагностика.
The problem of the passage of acoustic waves in the neighborhood of a gas bubble in a tube is formulated and solved numerically. The main parameters determining the bubble dynamics in a nonstationary field are determined. The mechanism of jet deformation of the bubble followed by jet fragmentation and formation of a secondary small-size bubble fraction is studied. A possible explanation of the nature of local sonoluminiscence is proposed.Introduction. Interest in the wave dynamics of bubbly liquids is motivated by the importance of applying research results to problems of power engineering, gas and oil production industry, and chemical technology. The wave parameters in bubbly media are largely determined by the behavior of a single bubble during its interaction with propagating compression and rarefaction waves. Many theoretical models are based on the assumption that the gas bubble is spherical during oscillations and that the liquid phase is incompressible. In these models, the reverse effect of the pulsating bubble on the external flow is usually ignored (see [1][2][3]). However, the experiments of Kornfeld and Suvorov [4] revealed that bubbles can collapse asymmetrically with jet formation. Kedrinskii and Soloukhin [5] showed that during compression a bubble gradually loses its spherical shape and becomes convex toward the shock wave (SW) propagation direction. The dynamics of a bubble produced by a laser pulse at a solid boundary was studied experimentally by Vogel et al. [6]. They observed jet formation on the bubble surface even in the initial stages of bubble interaction with strong waves, where the bubble shape should not be significantly distorted by Taylor or Kelvin-Helmholtz instability. They called this phenomenon the jet deformation of bubbles and proposed the following explanation of its mechanism: the nonuniform compression of a bubble gives rise to a liquid cumulative jet, which propagates into the bubble and is then reflected from the opposite wall of the bubble to form a jet directed outward. In addition, local light flashes were recorded inside the bubble near its surface [7]. This implies that the fields of the basic thermodynamic parameters in the bubble can be substantially inhomogeneous. According to modern experiments [3,8,9], the action of a strong SW on a single bubble away from a solid wall or on a group of bubbles is also accompanied by jet formation. Consequently, an asymmetric collapse of a bubble can occur when it is located near the boundary with a solid or gas phase or is in a strong SW field.In modeling asymmetric collapse, it is necessary to take into account the nonstationarity of the external (for the bubble) flow and the reverse effect of the bubble on the liquid under conditions of liquid compressibility. To describe these effects, one needs to solve the complete hydrodynamic equations with explicit interfaces and to calculate the fields of the basic parameters both inside the bubble and in the external liquid flow. It is clear that one-dimensional analysis is insufficient...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.