Introduction: Preoperative stereotactic radiosurgery (pre-SRS) is a recent advancement in the strategy for brain metastasis (BM) management, and available data demonstrate the advantages of pre-SRS before postoperative radiation treatment, including lower rates of local toxicity, leptomeningeal progression, and a high percentage of local control. The authors presented the results of pre-SRS in patients with BM.Materials and methods: Nineteen patients with BM (11 female and eight male) have been treated at N.N. Burdenko Medical Research Center for Neurosurgery (Moscow, Russia) and Gamma-Knife Center (Moscow, Russia) using pre-SRS. A total of 22 symptomatic metastatic lesions were preoperatively irradiated in the series. Eight patients had multiple BM (number of metastases ranged between two and seven). The median target volume for combined treatment was 14.131 cc (volumes varied between 2.995 and 57.098 cc; mean - 19.986 cc). The median of the mean target dose was 18 Gy, ranging between 12.58 and 24.36 Gy. Results: All patients tolerated pre-SRS well, without any neurological deterioration, and surgical treatment was performed as scheduled. The median follow-up period was 6.3 months (ranging between five weeks and 22.9 months). In 17 out of 19 patients, follow-up magnetic resonance (MR) images obtained two or three months after the combined treatment demonstrated the postoperative cavity without any signs of postradiation alterations in the perifocal tissues. In two observations, peritumoral edema was present. Local recurrences were found in two cases, 5.5 and 17.4 months after treatment. Radionecrosis was present in one observation after 4.6 months of follow-up. Two patients died of disease progression and are presented as illustrative cases.Conclusion: The combined treatment of secondary brain tumors has proved to be the best treatment option. Preoperative stereotactic radiosurgery may decrease radiation-induced toxicity and rates of local tumor progression. The potential hazards of pre-SRS associated with the postoperative healing of irradiated soft tissues of the head were not confirmed in our study. The decision of pre-SRS should be made by the tumor board, including specialists in neurosurgery, neuro-oncology, and radiation oncology, if the diagnosis of BM is based on oncological history and visualization data.
Nanoribbon chips, based on “silicon-on-insulator” structures (SOI-NR chips), have been fabricated. These SOI-NR chips, whose surface was sensitized with covalently immobilized oligonucleotide molecular probes (oDNA probes), have been employed for the nanoribbon biosensor-based detection of a circular ribonucleic acid (circRNA) molecular marker of glioma in humans. The nucleotide sequence of the oDNA probes was complimentary to the sequence of the target oDNA. The latter represents a synthetic analogue of a glioma marker—NFIX circular RNA. In this way, the detection of target oDNA molecules in a pure buffer has been performed. The lowest concentration of the target biomolecules, detectable in our experiments, was of the order of ~10−17 M. The SOI-NR sensor chips proposed herein have allowed us to reveal an elevated level of the NFIX circular RNA in the blood of a glioma patient.
G-quadruplex oligonucleotides (GQs) exhibit specific anti-proliferative activity in human cancer cell lines, and they can selectively inhibit the viability/proliferation of cancer cell lines vs. non-cancer ones. This ability could be translated into a cancer treatment, in particular for glioblastoma multiform (GBM), which currently has a poor prognosis and low-efficiency therapeutic treatments. A novel bi-modular GQ, bi-(AID-1-T), a twin of the previously described three-quartet AID-1-T, was designed and studied in terms of both its structure and function. A covalent conjugation of two AID-1-Ts via three thymidine link, TTT, did not interfere with its initial GQ structure. A comparison of bi-(AID-1-T) with its mono-modular AID-1-T, mono-modular two-quartet HD1, and bi-modular bi-HD1, as well as conventional two-quartet AS1411, was made. Among the five GQs studied, bi-(AID-1-T) had the highest anti-proliferative activity for the neural cancer cell line U87, while not affecting the control cell line, human embryonic fibroblasts. GQs, for the first time, were tested on several primary glioma cultures from patient surgical samples. It turned out that the sensitivity of the patient primary glioma cultures toward GQs varied, with an apparent IC50 of less than 1 μM for bi-(AID-1-T) toward the most sensitive G11 cell culture (glioma, Grade III).
One of the most serious/potentially fatal complications of transsphenoidal surgery (TSS) is internal carotid artery (ICA) injury. Of 6230 patients who underwent TSS, ICA injury occurred in 8 (0.12%). The etiology, possible treatment options, and avoidance of ICA injury were analyzed. ICA injury occurred at two different stages: (1) during the exposure of the sella floor and dural incision over the sella and cavernous sinus and (2) during the resection of the cavernous sinus extension of the tumor. The angiographic collateral blood supply was categorized as good, sufficient, and nonsufficient to help with the decision making for repairing the injury. ICA occlusion with a balloon was performed at the injury site in two cases, microcoils in two patients, microcoils plus a single barrel extra-intracranial high-flow bypass in one case, stent grafting in one case, and no intervention in two cases. The risk of ICA injury diminishes with better preoperative preparation, intraoperative navigation, and ultrasound dopplerography. Reconstructive surgery for closing the defect and restoring the blood flow to the artery should be assessed depending on the site of the injury and the anatomical features of the ICA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.