Using deep neural networks (DNNs) as models to explore the biological brain is controversial, which is mainly due to the impenetrability of DNNs. Inspired by neural style transfer, we circumvented this problem by using deep features that were given a clear meaning--the representation of the semantic content of an image. Using encoding models and the representational similarity analysis, we quantitatively showed that the deep features which represented the semantic content of an image mainly modulated the activity of voxels in the early visual areas (V1, V2, and V3) and these features were essentially depictive but also propositional. This result is in line with the core viewpoint of the grounded cognition to some extent, which suggested that the representation of information in our brain is essentially depictive and can implement symbolic functions naturally.
The crosshole ground-penetrating radar (GPR) technique is widely used to characterize subsurface structures, yet the interpretation of crosshole GPR data involves solving non-linear and ill-posed inverse problems. In this work, we developed a generative adversarial network (GAN)-based inversion framework to translate crosshole GPR images to their corresponding 2D defect reconstruction images automatically. This approach uses fully connected layers to extract global features from crosshole GPR images and employs a series of cascaded U-Net structures to produce high-resolution defect reconstruction results. The feasibility of the proposed framework was demonstrated on a synthetic crosshole GPR dataset created with the finite-difference time-domain (FDTD) method and real-world data from a field experiment. Our inversion network obtained recognition accuracy of 91.36%, structural similarity index measure (SSIM) of 0.93, and RAscore of 91.77 on the test dataset. Furthermore, comparisons with ray-based tomography and full-waveform inversion (FWI) suggest that the proposed method provides a good balance between inversion accuracy and efficiency and has the best generalization when inverting actual measured crosshole GPR data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.